Skip to main content
Log in

Swelling behavior and drug release of NIPAAm/PEGMEA copolymeric hydrogels with different crosslinkers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) methylether acrylate (PEGMEA) and tetraethylene glycol diacrylate (TEGDA) were first synthesized. The thermosensitive hydrogels were then prepared from N-isopropylacrylamide (NIPAAm), PEGMEA, and three crosslinkers with different structures such as N, N′-methylene-bis-acrylamide (NMBA), TEGDA, and poly(ethylene glycol) dimethacrylate (EGDMA). The influence of polymerization factors such as the kind and amount of crosslinker and initial total monomer concentration on the swelling behavior, gel strength, effective crosslinking densities, and number-average molecular weight between crosslink points ( \(\overline {{M}}_{\rm c}\)) for the present copolymeric hydrogels was investigated. The results indicate that the swelling ratios for the present copolymeric gels decrease with increase in temperature. In addition, the results also showed that the higher swelling ratios for the present gels prepared from TEGDA were obtained due to the larger space between the gel networks. The crosslinking density depends on the swelling ratio and the kind and extent of crosslinker. In addition, the drug release behavior for the present copolymeric gels was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bae YH, Okano T, KIM SW (1990) J Polym Sci Polym Phys 28:923

    Article  CAS  Google Scholar 

  2. Ricka J, Tanaka T (1984) Macromolecules 17:2916

    Article  CAS  Google Scholar 

  3. Hirokawa E, Tanaka T (1984) J Chem Phys 81:6379

    Article  Google Scholar 

  4. Hoffman AS (1987) J Control Release 6:297

    Article  CAS  Google Scholar 

  5. Ishihara K, Muramoto N, Shinohara I (1984) J Appl Polym Sci 29:211

    Article  CAS  Google Scholar 

  6. Kungwatchakun D, Irie M (1988) Macromol Chem Rapid Commun 9:243

    Article  CAS  Google Scholar 

  7. Eisenberg SR, Grodzinski AJ (1984) J Membr Sci 19:173

    Article  CAS  Google Scholar 

  8. Otaka K, Inomata H, Konno M, Saito S (1992) Macromolecules 23:283

    Article  Google Scholar 

  9. Amiya T, Hirokawa Y, Hirose Y, LI Y, Tanaka T (1987) J Chem Phys 86:2357

    Article  Google Scholar 

  10. Hirotsu S (1988) J Chem Phys 88:427

    Article  CAS  Google Scholar 

  11. Dong LC, Hoffman AS (1990) J Contr Release 13:21

    Article  CAS  Google Scholar 

  12. Bae YH, Okano T, KIM SW (1989) J Control Release 9:271

    Article  CAS  Google Scholar 

  13. Park TG, Hoffman AS (1990) J Biomed Res 24:21

    Article  CAS  Google Scholar 

  14. Park TG, Hoffman AS (1990) Biotech Bioeng 35:152

    Article  CAS  Google Scholar 

  15. Abuchowski AT, Palczuk NC, Davis FF (1977) J Biol Chem 252:3578

    CAS  Google Scholar 

  16. Dolan AK, Edwards SF (1975) Proc R Soc Landon 343:427

    CAS  Google Scholar 

  17. Hermans J (1982) J Chem Phys 77:2193

    Article  CAS  Google Scholar 

  18. Graham NB, Mcneill ME (1984) Biomaterials 5:27

    Article  CAS  Google Scholar 

  19. Merrill EW, Salzman EW (1983) ASAIO J 6:60

  20. Harris JM (1992) Polyethylene glycol chemistry, biotechnical and biomedical application. Plenum Press, New York

    Google Scholar 

  21. Lee JH, Kopecek J, Andrade JD (1989) J Biomed Mater Res 23:1351

    Google Scholar 

  22. Lee WF, Lin YH (2003) J Appl Polym Sci 90:1683

    Article  CAS  Google Scholar 

  23. Lee WF, Lin YH (2005) J Appl Polym Sci (to appear)

  24. Peppas NA, Franson NM (1983) J Polym Sci Polym Phys Ed 21:983

    Article  CAS  Google Scholar 

  25. Davidson CWR, Peppas NA (1986) J Contr Release 3:259

    Article  CAS  Google Scholar 

  26. Peppas NA, Barr-Howell BD (1986) Hydrogels in medicine and pharmacy. CRC Press, Boca Raton

    Google Scholar 

  27. Treloar LRG (1975) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  28. Lee WF, Yeh PL (1997) J Appl Polym Sci 64:2371

    Article  CAS  Google Scholar 

  29. Davis TP, Huglin MB, Yip DCF (1988) Polymer 29:701

    Article  CAS  Google Scholar 

  30. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca NY

    Google Scholar 

  31. Franson NM, Peppas NA (1983) J Appl Polym Sci 28:1299

    Article  CAS  Google Scholar 

  32. Korsmeyer RW, Merrwall EW, Peppas NA (1986) J Polym Sci Polym Phys Ed 24:409

    Article  CAS  Google Scholar 

  33. Alfrey T, Gurnee EF, Lloyd WG (1966) J Polym Sci C 12:249

    Google Scholar 

  34. Kabra BG, Gehrke SH, Hwang ST (1991) J Appl Polym Sci 42:2409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Science Council of the Republic of China for financial support under Grant No. NSC 89–2218-E-036–013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Fu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WF., Lin, YH. Swelling behavior and drug release of NIPAAm/PEGMEA copolymeric hydrogels with different crosslinkers. J Mater Sci 41, 7333–7340 (2006). https://doi.org/10.1007/s10853-006-0882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0882-1

Keywords

Navigation