Skip to main content
Log in

Artificial neural network modeling for the prediction of critical transformation temperatures in steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Accurate knowledge of critical transformation temperatures in steels such as the austenitizing temperature, T γ, isothermal bainite and martensite start temperatures, B S and M S, is of unquestionable significance from an industrial and research point of view. Therefore a significant amount of work has been devoted not only in understanding the physical mechanism lying beneath those transformations, but also obtaining quantitatively accurate models. Nowadays, with modern computing systems, more rigorous and complex data analysis methods can be applied whenever required. Thus, Artificial Neural Network (ANN) analysis becomes a very attractive alternative, for being easily distributed, self-sufficient and for its ability of accompanying its predictions by an indication of their reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olson GB, Cohen M (1976) Metall Trans 7A:1897

    CAS  Google Scholar 

  2. Bhadeshia HKDH (2001) Bainite in steels, 2nd edn. Institute of Materials, London

  3. Mackay DJC (2003) Information Theory, inference, and learning algorithms. Cambridge University Press, Cambridge

  4. Bhadeshia HKDH (1999) ISIJ Int 39:966

    Article  CAS  Google Scholar 

  5. Sourmail T, Bhadeshia HKDH, Mackay DJC (2002) Mater Sci Technol 18:655

    Article  CAS  Google Scholar 

  6. Mackay DJC (1992) Neural Comput 4:415

    Article  Google Scholar 

  7. Mackay DJC (1992) Neural Comput 4:448

    Article  Google Scholar 

  8. Sourmail T, Bhadeshia HKDH (2005) In: Barber Z (ed) Introduction to materials modeling. Institute of Materials, London

  9. Atlas of isothermal transformation diagrams (United States Steels, USS, Corporation, Pittsburgh 1959)

  10. Economopoulos M, Lambert N, Habraken L (1967) Diagrammes de transformation des aciers fabriques dans le Benelux. Centre National de Recherches Metallurgiques (CRM), Bruxelles

  11. Maratray F, Usseglio-nanot R (1996) Atlas of transformation characteristics of chromium and chromium-molybdenum white irons. Climax Molybdenum S.A., Paris, France

  12. Atkins M (1985) Atlas of transformation diagrams for engineering steels. British Steel Coorporation, BSC, Sheffield, England

  13. Andrews KW (1965) JISI 203:721

    CAS  Google Scholar 

  14. Steven W, Haynes AG (1956) JISI 183:349

    CAS  Google Scholar 

  15. Boyer HE (1977) Atlas of isothermal transformation and cooling transformation diagrams. American Society of Metals, Metals Park, OH

  16. Atlas of isothermal transformation of B.S. en steels (2nd edition. Special report No. 56. The Iron and steel Institute. 4 Grosvenor gardens, London, SWI. 1956)

  17. Chang LC. (1999) Metall Trans A 30:909

    Article  Google Scholar 

  18. Garcia-Mateo C, Caballero FG, Bhadeshia HKDH (2003) ISIJ Int 43:1821

    Article  CAS  Google Scholar 

  19. Vander Voort GF (ed) (1991) Atlas of time-temperature diagrams for irons and steels. ASM International, Metals Park, OH

  20. Lee YK (2002) J Mater Sci Lett 21:1253

    Article  CAS  Google Scholar 

  21. Bodnar RL, Ohhashi T, Jaffee RI (1989) Metall Trans A 20:1445

    Article  Google Scholar 

  22. Ghosh G, Olson GB (1994) Acta Mater 42:3361

    Article  CAS  Google Scholar 

  23. Atkins M (1998) Atlas of continuous cooling transformation diagrams for engineering steels. Tech. Rep. British Steel Corporation

  24. Atlas of isothermal transformation diagrams of B.S. EN steels (Special report no 40, Tech. Rep. The British Iron and Steel research association 1949)

  25. Greninger AB (1942) Trans ASM 30:1

    CAS  Google Scholar 

  26. Digges TG (1940) Trans ASM 28:575

    CAS  Google Scholar 

  27. Bell T, Owen WS (1967) JISI 205:1777

    Google Scholar 

  28. Ishida K, Nishizawa T (1974) Trans JIM 15:218

    Google Scholar 

  29. Oka M, Okamoto H (1988) Metall Trans A 19:447

    Article  Google Scholar 

  30. Pascover JS, Radcliffe SV (1968) Trans AIME 242:673

    CAS  Google Scholar 

  31. Yeo RBG (1963) Trans AIME 227:884

    CAS  Google Scholar 

  32. Sastri AS, West DRF (1965) JISI 203:138

    CAS  Google Scholar 

  33. Lenel UR, Knott BR (1987) Metall Trans A 18:767

    Article  Google Scholar 

  34. Goodenow RH, Heheman RF (1965) Trans AIME 233:1777

    Google Scholar 

  35. Grange RA, Stewart HM (1945) Trans AIME 167:467

    Google Scholar 

  36. Rao MM, Winchell PG (1967) Trans AIME 239:956

    CAS  Google Scholar 

  37. Payson P, Savage CH (1944) Trans ASM 33:261

    Google Scholar 

  38. Rowland ES, Lyle SR (1946) Trans ASM 37:27

    Google Scholar 

  39. Kirkaldy JS, Venugopalan D (1984) In: Marder AR, Goldstein JI (eds) Phase transformations in ferreous alloys. TMS-AIME, Warrendale, PA

  40. Carapella LA (1944) Metals Prog 46:108

    Google Scholar 

  41. Vermeulen WG, Morris PF, De Weijer AP, Van Der Zwaag S (1996) Ironmak Steelmak 23:433

    CAS  Google Scholar 

  42. Sourmail T, Garcia-Mateo C. (2005) Compu Mater Sci 34:323

    Article  CAS  Google Scholar 

  43. Sourmail T, Garcia-Mateo C. (2005) Compu Mater Sci 34:213

    Article  CAS  Google Scholar 

  44. Model Manager (2003) Neuromat Ltd. www.neuromat.com

  45. Honeycombe RWK, Bhadeshia HKDH (1995) Steels. Microstructure and properties, 2nd edn. Edward Arnold, London

  46. Andersson J-O, Sundman R (1987) Calphad 11:83

    Article  CAS  Google Scholar 

  47. Fernandez Guillermet A (1982) Calphad 6:127

    Article  Google Scholar 

  48. Huang W (1989) Calphad 13:243

    Article  CAS  Google Scholar 

  49. Kunitake T, Okada YJ (1998) Iron Steel Inst Jpn 84:137

    Article  CAS  Google Scholar 

  50. Garcia-Mateo C, Sourmail T, Caballero FG, Capdevila C, Garcia De Andrés C (2005) Mater Sci Technol 21:934

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Coal and Steel Community (ECSC agreement number 7210-PR/345) and the Spanish Ministerio de Ciencia y Tecnología (Project-MAT 2002-10812 E). C. Garcia-Mateo would like to thank Spanish Ministerio de Ciencia y Tecnología for the financial support in the form of a temporal Ramón y Cajal contract (RyC 2004 Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garcia-Mateo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia-Mateo, C., Capdevila, C., Caballero, F.G. et al. Artificial neural network modeling for the prediction of critical transformation temperatures in steels. J Mater Sci 42, 5391–5397 (2007). https://doi.org/10.1007/s10853-006-0881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0881-2

Keywords

Navigation