Skip to main content

Advertisement

Log in

Fluorescence spectroscopy analysis of Al–Al2O3 composites with coarse interpenetrating networks

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fluorescence microprobe spectroscopy was used to characterize the stress fields that develop within an interpenetrating Al–Al2O3 composite resulting from both the thermal expansion mismatch during sample processing, and from an external applied load. The 30 vol% Al–70 vol% Al2O3 composite that was investigated had an aluminum and alumina phase feature size of 50–100 μm. The residual thermal compressive stress measured in the alumina was ∼40–340 MPa. The effect of varying the metal ligament size on the residual stress distribution is discussed. Additionally, the application of an external load caused a non-uniform stress distribution to develop within the alumina regions around the crack-tip, which was attributed to microstructure inhomogeneities. The crack was further extended and the influence of the stress distribution within the alumina regions on the crack extension direction is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Venkateswara Rao KT, Soboyelo WO, Ritchie RO (1992) Metall Trans A 23A:2249

    Google Scholar 

  2. Badrinarayanan K, McKelvey AL, Venkateswara Rao KT, Ritchie RO (1996) Metall Trans A 27A:3781

    CAS  Google Scholar 

  3. Bloyer DR, Venkateswara Rao KT, Ritchie RO (1998) Metall Trans A 29A:2483

    CAS  Google Scholar 

  4. Prielipp H, Knechtel M, Claussen N, Streiffer S, Müllejans H, Rühle M, Rödel J (1995) Mater Sci Engng 197A:19

    Article  Google Scholar 

  5. Neubrand A, Chung T-J, Rödel J, Steffler ED, Fett T (2002) J Mater Res 17(11):2912

    CAS  Google Scholar 

  6. Moon RJ, Tilbrook M, Hoffman M, Neubrand A (2005) J Am Ceramic Soc 88(3):666

    Article  CAS  Google Scholar 

  7. Hoffman M, Skirl S, Pompe W, Rödel J (1999) Acta Mater 47:565

    Article  CAS  Google Scholar 

  8. Hoffman M, Fiedler B, Emmel T, Prielipp H, Claussen N, Gross D, Rödel J (1997) Acta mater 45:3609

    Article  CAS  Google Scholar 

  9. Skirl S, Hoffman M, Bowman K, Wiederhorn S, Rödel J (1998) Acta Mater 46:2493

    Article  CAS  Google Scholar 

  10. Hoffman M, Rödel J, Skirl S, Zimmermann A, Fuller E, Mullejans H (1999) Key Eng Mater 159–160:311

    Article  Google Scholar 

  11. Ashby MF, Blunt FJ, Bannister M (1989) Acta Metall 37:1847

    Article  CAS  Google Scholar 

  12. Pezzotti G, Muller WH (2002) Continuum Mech Thermodyn 14:113

    Article  Google Scholar 

  13. Wang C, Libardi W, Baldo JB (1998) Int J Fracture 94:177

    Article  CAS  Google Scholar 

  14. Kassam ZHA, Zhang RJ, Wang Z (1995) Mat Sci Eng A203:286

    CAS  Google Scholar 

  15. Li Z, Chen Q (2003) Eng Frac Mech 70:581

    Article  Google Scholar 

  16. Butcher RJ, Rousseau CE, Tippur HV (1999) Acta Mater 47(1):259

    Article  CAS  Google Scholar 

  17. Kubler J (1997) Ceram Eng Sci Proc 18:155

    Article  CAS  Google Scholar 

  18. Pezzotti G, Sbaizero O (2001) Mat Sci Eng A303:267

    CAS  Google Scholar 

  19. He J, Clarke DR (1995) J Am Ceram Soc 78:1347

    Article  CAS  Google Scholar 

  20. Ma Q, Clarke DR (1993) J Am Ceram Soc 76:1433

    Google Scholar 

  21. Tilbrook M, Moon R, Hoffman M (2005) Mat Sci Eng A393:170

    CAS  Google Scholar 

  22. ASTM Standard E 1820-96 (1997) Standard test method for measurement of fracture toughness. ASTM, Philadelphia, Pa

  23. Agrawal P, Conlon K, Bowman KJ, Sun CT, Chichocki FR Jr, Trumble KP (2003) Acta Mater 51:1143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Prof. Jürgen Rödel of the Technische Universitaet Darmstadt, Germany for use of equipment and assistance during sample preparation. Additionally, the authors would like to thank Lyndal Rutgers of the University of New South Wales for providing the epoxy-alumina sample. This work was supported by the Australian Research Council, the Australian Academy of Science and the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, R.J., Hoffman, M., Tochino, S. et al. Fluorescence spectroscopy analysis of Al–Al2O3 composites with coarse interpenetrating networks. J Mater Sci 41, 7571–7579 (2006). https://doi.org/10.1007/s10853-006-0843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0843-8

Keywords

Navigation