Journal of Materials Science

, Volume 42, Issue 13, pp 4792–4800 | Cite as

Fabrication of carbon nanofiber(CNF)-dispersed Al2O3 composites by pulsed electric-current pressure sintering and their mechanical and electrical properties

  • Ken HirotaEmail author
  • Yuichi Takaura
  • Masaki Kato
  • Yoshinari Miyamoto


Dense Al2O3-based composites (≥99.0% of theoretical) dispersed with carbon nanofibers (CNFs) were fabricated using the pulsed electric-current pressure sintering (PECPS) for 5 min at 1300°C and 30 MPa in a vacuum. The dispersion of CNFs into the matrix depended much on the particle size of the starting Al2O3 powders. Mechanical properties of the composites were evaluated in relation with their microstructures; high values of three-point bending strength σb (∼800 MPa) and fracture toughness K IC (∼5 MPa·m1/2) were attained at the composition of CNF/Al2O3 = 5:95 vol%, which σb and K IC values were ∼25% and ∼5%, respectively, higher than those of monolithic Al2O3. This might be due to the small Al2O3 grains (1.6 μm) of dense sintered compacts compared with that (4.4 μm) for the pure Al2O3 ceramics, resulting from the suppression of grain growth during sintering induced by uniformly dispersed CNFs in the matrix. Electrical resistivity of CNF/Al2O3 composites decreased rapidly from >1015 to ∼2.1 × 10−2 Ωm (5vol%CNF addition), suggesting the machinability of Al2O3-based composites by electrical discharge machining.


Al2O3 Fracture Toughness Spark Plasma Sinter Carbon Nanofibers Fine Al2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a grant to Research Centre for Advanced Science and Technology at Doshisha University from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Endo M, Kim YA, Hayashi T, Nishimura K, Matushita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287CrossRefGoogle Scholar
  3. 3.
    Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon 42:1153CrossRefGoogle Scholar
  4. 4.
    An J-W, You D-H, Lim D-S (2003) Wear 255:677CrossRefGoogle Scholar
  5. 5.
    Siegel RW, Chang SK, Ash BJ, Stone J, Ajayan PM, Doremus RW, Schadler LS (2001) Scripta Mater 44:2061CrossRefGoogle Scholar
  6. 6.
    Laurent Ch, Peigney A, Dumortier O, Rousset A (1998) J Euro Ceram Soc 18:2005CrossRefGoogle Scholar
  7. 7.
    Jiang L, Gao L, Sun J (2003) J Colloid Interface Sci 260:89CrossRefGoogle Scholar
  8. 8.
    Sun J, Gao L (2003) Carbon. 41:1063CrossRefGoogle Scholar
  9. 9.
    Tokita M (1993) J Soc Powder Tech Jpn 30:790Google Scholar
  10. 10.
    Powder Diffraction File, Card No. 46–1212, International Centre for Diffraction Data, Newtown Square, PA, 2001Google Scholar
  11. 11.
    CNF Catalogue from the supplier (Showa Denko K.K.) 2001. (
  12. 12.
    Hiihara K, Morena R, Hasselman DPH (1982) J Mater Sci Lett 1:13CrossRefGoogle Scholar
  13. 13.
    van der Pauw LJ (1958) Philips Rep 13:1Google Scholar
  14. 14.
    Mendelson MI (1969) J Am Ceram Soc 52:443CrossRefGoogle Scholar
  15. 15.
    Kingery WD, Bowen HK, Uhlmann DR (1976) In: Introduction to ceramics, 2nd ed. John Wiley & Sons, NY, p 595Google Scholar
  16. 16.
    Thostenson ET, Ren Z, Chou T-W (2001) Composites Sci Tech 61:1899CrossRefGoogle Scholar
  17. 17.
    Zhu YQ, Zhang HG, Zhang JH, Liang J, Gao ZD, Wei BQ, Wu DH, Hui MJ (1994) J Mater Sci Lett 13:1104CrossRefGoogle Scholar
  18. 18.
    Rice RW (2003) In: Mechanical properties of ceramics and composites – grain and particle effects. Marcel Dekker, Inc. NY, p 127Google Scholar
  19. 19.
    Alpert CP, Chan HM, Bennison SJ, Lawn BR (1988) J Am Ceram Soc 71:C371CrossRefGoogle Scholar
  20. 20.
    Krell A, Blank (1993) J Am Ceram Soc 78:1118Google Scholar
  21. 21.
    Rice RW (2003) In: Mechanical properties of ceramics and composites – grain and particle effects. Marcel Dekker, Inc. New York, Basel, pp 601Google Scholar
  22. 22.
    Tanaka K, Koguchi K, Mura T (1989) Int J Eng Sci 27:11CrossRefGoogle Scholar
  23. 23.
    Cha SI, Kim KT, Lee KH, Mo CB, Hong SH (2005) Scripta Mater 53:793CrossRefGoogle Scholar
  24. 24.
    Mo CB, Cha SI, Kim KT, Lee KH, Hong SH (2005) Mater Sci & Eng A395:124CrossRefGoogle Scholar
  25. 25.
    Sun J, Iwasa M, Nakayama T, Niihara K (2004) J Ceram Soc Jpn 112:S403Google Scholar
  26. 26.
    Ning J, Zhang J, Pan Y, Guo J (2003) Mater Sci & Eng A357:392CrossRefGoogle Scholar
  27. 27.
    McLachlan DS, Blaszkiewicz M, Newnham RE (1990) J Am Ceram Soc 73:2187CrossRefGoogle Scholar
  28. 28.
    Shackelford JF, Alexander W (2001) In: Material science and engineering handbook, 3rd ed. CRC Press, NY, p 959Google Scholar
  29. 29.
    Petrofes NF, Gadalla AM (1988) Am Ceram Bull 67:1048Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ken Hirota
    • 1
    Email author
  • Yuichi Takaura
    • 1
  • Masaki Kato
    • 1
  • Yoshinari Miyamoto
    • 2
  1. 1.Department of Molecular Science and Technology, Faculty of EngineeringDoshisha UniversityKyotoJapan
  2. 2.Joining and Welding Research InstituteOsaka UniversityOsakaJapan

Personalised recommendations