Skip to main content
Log in

Microstructural evolution of bulk nanocrystalline Ni during creep

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments were conducted on electrodeposited (ED) nanocrystalline (nc) Ni with an average initial grain size of about 20 nm at 393 K to study the shape of the creep curves. In addition, microstructure was examined by means of transmission electron microscopy (TEM). The results show that the creep curves are characterized by the presence of a well-defined steady-state stage. An examination of the microstructure indicates that while grain growth occurs during deformation, the grain size attains a constant value once steady state creep is approached. A comparison between grain size measurements obtained by the TEM technique and those obtained via the X-ray diffraction method shows that the use of the latter method may lead to an underestimation of the value of the average grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  2. Gleiter H (2000) Acta Mater 48:1

    Article  CAS  Google Scholar 

  3. Mohamed FA, Li Y (2001) Mater Sci Eng A 298A:1

    Google Scholar 

  4. Bird JE, Mukherjee AK, Dorn JE (1969) In: Brandon DG, Rosen A (eds) Quantitative relation between properties and microstructures. Israel University Press, Jerusalem, pp 255

  5. Yin WM, Whang SH, Mirshams RA (2005) Acta Mater 53:383

    Article  CAS  Google Scholar 

  6. Kottada RS, Chokshi AH (2005) Scripta Mater 53:887

    Article  CAS  Google Scholar 

  7. Wang DL, Kong QP, Shui JP (1994) Scripta Metall Mater 31:47

    Article  CAS  Google Scholar 

  8. Deng J, Wang DL, Kong QP, Shui JP (1995) Scripta Metall Mater 32:349

    Article  CAS  Google Scholar 

  9. Xiao ML, Kong QP (1997) Scripta Mater 36:299

    Article  CAS  Google Scholar 

  10. Wang N, Wang Z, Aust KT, Erb U (1997) Mater Sci Eng A 237A:150

    Google Scholar 

  11. Hahn H, Averback RS (1991) J Am Ceram Soc 74:2918

    Article  CAS  Google Scholar 

  12. Yin WM, Whang SH, Mirshams RA, Xiao CH (2001) Mater Sci Eng A 301A:18

    Google Scholar 

  13. Dalla Torre F, Spätig P, Schäublin R, Victoria M (2005) Acta Mater 53:2337

    Article  CAS  Google Scholar 

  14. Dalla Torre F, Van Swygenhoven H, Schäublin R, Spätig P, Victoria M (2005) Scripta Mater 53:23

    Article  CAS  Google Scholar 

  15. Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957

    Article  CAS  Google Scholar 

  16. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  17. Wang YM, Chang S, Wei QM, Ma E, Nieh TG, Hamza A (2004) Scripta Mater 51:1023

    Article  CAS  Google Scholar 

  18. Haasz TR, Aust KT, Palumbo G, El-Sherik AM, Erb U (1995) Scripta Metall Mater 32:423

    Article  CAS  Google Scholar 

  19. Shei SA, Langdon TG (1978) Acta Metall 26:639

    Article  CAS  Google Scholar 

  20. Yan S (1998) PhD Thesis. University of California, Irvine

  21. Chirouze BY, Schwartz DM, Dorn JE (1967) Trans Q AM Soc Metals 60:51

    CAS  Google Scholar 

  22. Murty KL, Mohamed FA, Dorn JE (1972) Acta Metall 20:1009

    Article  CAS  Google Scholar 

  23. Chauhan M, Mohamed FA (2006) Mater Sci Eng A 427:7

    Article  Google Scholar 

  24. Mackenzie JK, Moore AJW, Nicholas JF (1962) J Phys Chem Solids 23:185

    Article  CAS  Google Scholar 

  25. Kulg HP, Alexander LE (1974) Wiley, New York, pp 661

  26. Coble RL (1963) J Appl Phys 34:1679

    Article  Google Scholar 

  27. Wang N, Wang Z, Aust KT, Erb U (1995) Acta Metall Mater 43:519

    Article  CAS  Google Scholar 

  28. Conrad H, Narayan J (2000) Scripta Mater 42:1025

    Article  CAS  Google Scholar 

  29. Liao XZ, Kilmametov AR, Valiev RZ, Gao H, Li X, Mukherjee AK, Bingert JF, Zhu YT (2006) Appl Phys Lett 88:021909

    Article  Google Scholar 

  30. Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  31. Jin M, Minor AM, Stach EA, Morris JW (2004) Acta Mater 52:5381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation under Grant number DMR-0304629. Thanks are extended to Dr. Wen-An Chiou, Indranil Roy, and Li-Chung Lai for their assistance in some of the TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farghalli A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauhan, M., Mohamed, F.A. Microstructural evolution of bulk nanocrystalline Ni during creep. J Mater Sci 42, 1606–1614 (2007). https://doi.org/10.1007/s10853-006-0823-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0823-z

Keywords

Navigation