Skip to main content
Log in

Processing of submicrometric CaTi0.8Fe0.2O3-δ ceramics by mechanical activation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of mechanical activation of precursors in order to obtain CaTi0.8Fe0.2O3-δ are reported. Mixtures of CaCO3, TiO2 and Fe2O3 were dry-grinded in Teflon or zirconia containers using planetary ball-mills at different rotations (200, 300 and 500 rpm) and for various periods of time. The perovskite is not formed just by milling and a subsequent heat treatment at 800–1,000 °C was necessary. This still represents a significant advantage over the classical ceramic route as a result of the improved reaction kinetics due to the smaller grain size (<100 nm) of the activated powders and a modification of the thermodynamic initial state. Dense ceramic samples showing a bimodal submicrometric grain-size distribution (100–200 and 250–500 nm) were obtained after sintering the activated powders at 1,150 °C TEM revealed homogeneous samples, free from inhomogeneities such as core-shell grains typically observed in ceramics obtained from non-activated precursors sintered at 1,320–1,350 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Esaka T, Fujii T, Suwa K, Iwahara H (1990) Solid State Ionics 40/41:544

    Article  Google Scholar 

  2. Sujita D, Norby T, Osborg PA, Kofstad P (1993) In: Singhal SC, Iwahara H (eds) Proc. of the 3rd Int. Symposium on Solid Oxide Fuel Cells, Electrochem. Soc. Proc., vol 93–4. Electrochemical Society, Pennington, NJ, pp 552–561

  3. Selçuk A, Steele BCH (1995) Fourth Euro Ceramics-vol 5, Gusmano G, Traversa E (eds) (Editoriale Faenza Editrice S.p.A. 413)

  4. Figueiredo FM, Waerenborgh JC, Kharton VV, Näffe H, Frade JR (2003) Solid State Ionics 156:371

    Article  CAS  Google Scholar 

  5. Grenier J-C, Schiffmacher G, Caro P, Pouchard M, Hagenmuller P (1977) J Solid State Chem 20:365

    Article  CAS  Google Scholar 

  6. Itoh H, Asano H, Fukuroi K, Nagata M, Iwahara H (1997) J Am Ceram Soc 80(6):1359

    Article  CAS  Google Scholar 

  7. Figueiredo FM, Soares MR, Kharton VV, Naumovich EN, Waerenborgh JC, Frade JR (2004) J Electroceramics 13:627

    Article  CAS  Google Scholar 

  8. Hennings D, Rosenstein G (1984) J Am Ceram Soc 67(4):249

    Article  CAS  Google Scholar 

  9. Figueiredo FM, Kharton VV, Waerenborgh JC, Viskup AP, Naumovich EN, Frade JR (2004) J Am Ceram Soc 87(12):2252

    Article  CAS  Google Scholar 

  10. Mi G, Saito F, Suzuki S, Waseda Y (1998) Powder Technol 97(2):178

    Article  CAS  Google Scholar 

  11. Berry FJ, Wynn P, Jiang J, Mørup S (2001) J Mat Sci 36:3637

    Article  CAS  Google Scholar 

  12. Berbenni V, Marini A (2002) Mat Res Bull 37:221

    Article  CAS  Google Scholar 

  13. Berbenni V, Marini A, Matteazzi P, Ricceri R, Welham NJ (2003) J Eur Ceram Soc 23:527

    Article  CAS  Google Scholar 

  14. Wang J, Yin S, Zhang Q, Saito F, Sato T (2003) J Mater Chem 13:2348

    Article  CAS  Google Scholar 

  15. Hungría T, Hungría A-B, Castro A (2004) J Solid State Chem 177:1559

    Article  CAS  Google Scholar 

  16. Evans IR, Howard JAK, Sreckovicb T, Risticc MM (2003) Mat Res Bull 38:1203

    Article  CAS  Google Scholar 

  17. Stumm W, Morgan JJ (1981) Aquatic Chemistry. 2nd Edn, John Wiley & Sons, New York, 753

    Google Scholar 

  18. NBS Tables of Chemical Thermodynamic Properties (1982) J Phys Chem Ref Data, 11, Supplement 2, 1982

  19. Thomas JM, Renshaw GD (1967) J Am Chem Soc 89A:2058

    Google Scholar 

  20. Becerro AI, Redfern SAT, Carpenter MA, Knight KS, Seifert F (2002) J Solid State Chem 167:459

    CAS  Google Scholar 

  21. Redfern SAT (1996) J Phys Condens Matter 8:8267

    Article  CAS  Google Scholar 

  22. Petrić J, Vučak M, Krstulović R, Brečević Lj, Kralj D (1996) Thermochim Acta 277:175

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the FCT (POCI/CTM/59727/2004), Portugal. E. Chinarro was awarded a Marie Curie fellowship of the European Community Programme IHP under contract number HPMT-CT-2000-00206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, R.O., Chinarro, E., Figueiredo, F.M. et al. Processing of submicrometric CaTi0.8Fe0.2O3-δ ceramics by mechanical activation. J Mater Sci 41, 7393–7400 (2006). https://doi.org/10.1007/s10853-006-0812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0812-2

Keywords

Navigation