Skip to main content
Log in

A chemiometric approach for phosphate inhibition of copper corrosion in aqueous media

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The inhibition of copper corrosion in aqueous media by inorganic phosphates has been studied using a chemiometric approach (experimental and simplex designs). To achieve the objective, four steps were recognized. When submitted to aqueous aggressive media, the anion nature and its concentration were the important variables for the explanation of the mass loss variation. The most corrosive experimental conditions were: anion: chloride (Cl); concentration: [Cl] = 1 mol/l; exposure time: 24 h. In the second step, two inorganic phosphates, Na3PO4 and Na5P3O10, are tested as copper corrosion inhibitors when the material is submitted to the severe conditions. The chemical structure was found to be the most influent factor. However, %IE varies between 25% and 56%. Then, we recognized a passivating treatment by submitting copper to inhibitor solution before immersion in the aggressive medium. Three parameters were studied: inhibitor structure, chemical concentration and passivation time (tp). We concluded that tp is the most influent experimental factor. The best passivating conditions are: inhibitor: Na5P3O10; inhibitor concentration: [Inhibiteur] = 10−2 mol/l and passivation time: 3 h. The inhibition efficiency was 89%. To increase %IE, a simplex design was also performed starting by the above obtained conditions and using the polyphosphate (Na5P3O10) as inhibitor. The optimum experimental conditions for phosphate inhibition of copper corrosion in aqueous media are: inhibitor: Na5P3O10, [Na5P3O10] = 0.017 mol/l and passivation time tp = 2.17 h. Under these conditions an inhibition efficiency of 98% was reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ateya BG, Ashour EA, Sayed SM (1994) J Electrochem Soc 141(1):71

    Article  CAS  Google Scholar 

  2. Feng Y, Siow K-S, Teo W-K, Tan K-L, Hsieh A-K (1997) Corrosion 53:389

    Article  CAS  Google Scholar 

  3. Debiemme-Chouvy C, Ammeloot F, Sutter EMM (2001) Appl Surf Sci 174:55

    Article  CAS  Google Scholar 

  4. Bjorndhal WD, Nobe K (1984) Corrosion 40:82

    Google Scholar 

  5. Dhar HP, White RE, Burnell G, Corwell LR, Griffin RB, Darby R (1985) Corrosion 41:317

    CAS  Google Scholar 

  6. Delouis C, Mengoli G, Musiani MM, Tribollet B (1988) J Appl Electrochem 18:374

    Article  Google Scholar 

  7. Feng Y, Teo W-K, Siow K-S, Tan K-L, Hsieh A-K (1996) Corros Sci 38:369

    Article  CAS  Google Scholar 

  8. Proctor and Gamble Ltd. British Patent no. 652339, 1947

  9. Cicelio GP, Rosales BM, Varela FE, Vilche JR (1999) Corros Sci 44:1359

    Article  Google Scholar 

  10. Guenbour A, Kacemi A, Benbachir A (2000) Prog Org Coat 39:151

    Article  CAS  Google Scholar 

  11. Trachli B, Keddam M, Takenouti H, Srhiri A (2002) Corros Sci 44:997

    Article  CAS  Google Scholar 

  12. Kerit S, Aride A, Srhiri A, Benbachir A, Elkacemi K, Etman M (1993) J Appl Electrochem 23:835

    Article  Google Scholar 

  13. Taneichi D, Haneda R, Aramaki K (2001) Corros Sci 43:1589

    Article  CAS  Google Scholar 

  14. Haneda R, Aramaki K (1998) J Electrochem Soc 145:2786

    Article  CAS  Google Scholar 

  15. Perrin FX, Pagetti J (1998) Corros Sci 40:1647

    Article  CAS  Google Scholar 

  16. Fenelon AM, Breslin CB (2002) Electrochim Acta 47:4467

    Article  CAS  Google Scholar 

  17. Kalman E, Karman FH, Cserny I, Telegdi J, Varga D (1994) Electrochim Acta 39:1179

    Article  CAS  Google Scholar 

  18. Gonzalez Y, Lafont MC, Pebere N, Chatainier G, Roy J, Bouissou T (1995) Corros Sci 37:1823

    Article  CAS  Google Scholar 

  19. To XH, Pebere N, Dabosi F, Pelaprat N, Boutevin B, Parisi JP, Galvano-Organo-Traitement de surface, (654) 760 (1995) et dans le Procceding du 9ème Forum des impédances électrochimiques, Ed. C. Gabrielli, Paris (1995) 115

  20. To XH, Pebere N, Pelaprat N, Boutevin B, Hervaud Y (1997) Corros Sci 39:1925

    Article  CAS  Google Scholar 

  21. Truc TA, Pebere N, Hang TTX, Hervaud Y, Boutevin B (2002) Corros Sci 44:2055

    Article  CAS  Google Scholar 

  22. Muller B, Foster I (1996) Corros Sci 38:1103

    Article  Google Scholar 

  23. Edwards M, Hidmi L, Gladwell D (2002) Corros Sci 44:1057

    Article  CAS  Google Scholar 

  24. Souissi N, Bousslemi L, Khosrof S, Triki E (2003) Mater Corros 54(4):318

    Article  CAS  Google Scholar 

  25. Standard procedure ASTM G1-90 (reapproved 1999)

  26. Kiefer J, Wolfowitz J (1960) Can J Mathemat 12:363

    Google Scholar 

  27. Box GEP, Hunter JS, Hunter W (1978) Statistic for experimenters: an introduction to design, data analysis and model building. Wiley, New York

    Google Scholar 

  28. Goupy JL (1993) Methods for experimental design. Elsevier, Amsterdam

    Google Scholar 

  29. Haaland PD (1989) Experimental design in biotechnology. Marcel Dekker, New York and Basel

    Google Scholar 

  30. Spendley W, Hext GR, Himsworth FR (1962) Technometries 4:441

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Souissi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souissi, N., Triki, E. A chemiometric approach for phosphate inhibition of copper corrosion in aqueous media. J Mater Sci 42, 3259–3265 (2007). https://doi.org/10.1007/s10853-006-0809-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0809-x

Keywords

Navigation