Skip to main content
Log in

Oxide ceramic laminates with highly textured α-alumina interlayers: I. Texture control and laminate formation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three kinds of texture-reinforced oxide ceramic laminates with strongly bonded interfaces have been fabricated. All three were based on highly textured α-alumina interlayers, but each with a different oxide laminate matrix and a correspondingly different thermal mismatch between the textured interlayers and the matrix. Alginate-based, aqueous gel casting was used to produce a flexible tape for all the compositions studied. The highly textured alumina (TA) interlayers were derived from gel-cast tapes containing aligned alumina seed platelets. It has been found that the strongest texture derived from 9.1 vol% of the seed platelets in the gelled precursor tape. Using the March–Dollase model for texture analysis, the oriented volume fraction in the highly textured interlayers was estimated to vary from 60 to 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Paulik SW, Faber KT, Fuller ER (1994) J Am Ceram Soc 77:454

    Article  CAS  Google Scholar 

  2. Carisey T, Laugier-Werth A, Brandon DG (1995) J Euro Ceram Soc 15:1

    Article  CAS  Google Scholar 

  3. Vedula VR, Glass SJ, Saylor DM, Rohrer GS, Carter WC, Langer SA, Fuller ER (2001) J Am Ceram Soc 84:2947

    Article  CAS  Google Scholar 

  4. Ma Y, Kruger KL, Bowman KJ (1991) J Am Ceram Soc 74:2941

    Article  CAS  Google Scholar 

  5. Lee F, Sandlin MS, Bowman KJ (1993) J Am Ceram Soc 76:1793

    Article  CAS  Google Scholar 

  6. Pentecost JL, Wright CH (1963) Adv X-Ray Anal 7:174

    Google Scholar 

  7. Zimmerman MH, Faber KT, Fuller ER (1997) J Am Ceram Soc 80:2725

    Article  CAS  Google Scholar 

  8. Baskin DM, Zimmerman MH, Faber KT, Fuller ER (1997) J Am Ceram Soc 80:2929

    CAS  Google Scholar 

  9. Hirao K, Nakaoka T, Brito ME, Kanzaki S (1994) J Am Ceram Soc 77:1857

    Article  CAS  Google Scholar 

  10. Hong SH, Cermignani W, Messing GL (1996) J Euro Ceram Soc 16:133

    Article  CAS  Google Scholar 

  11. Sacks MJ, Scheiffele GW, Staab GA (1996) J Am Ceram Soc 79:1611

    Article  CAS  Google Scholar 

  12. Seabaugh MM, Kerscht IH, Messing GL (1997) J Am Ceram Soc 80:1181

    Article  CAS  Google Scholar 

  13. Suvaci E, OH KS, Messing GL (2001) Acta Mater 49:2075

    Article  CAS  Google Scholar 

  14. Clegg WJ, Kendall K, Alford NM, Button TW, Birchall JD (1990) Nature 347:455

    Article  CAS  Google Scholar 

  15. Davis JB, Kristoffersson A, Carlström E, Clegg WJ (2000) J Am Ceram Soc 83:2369

    Article  CAS  Google Scholar 

  16. Gee IA, Dobedoe RS, Vann R, Lewis MH, Blugan G, Kuebler J (2005) Adv Appl Ceramics 104(3):103

    Article  CAS  Google Scholar 

  17. Cai PZ, Green DJ, Messing GL (1998) J Eur Ceram Soc 5:2025

    Article  Google Scholar 

  18. Rao MP, Sánchez-Herencia AJ, Beltz GE, McMeeking RM, Lange FF (1999) Science 286:102

    Article  CAS  Google Scholar 

  19. Hatton B, Nicholson PS (2001) J Am Ceram Soc 84:571

    Article  CAS  Google Scholar 

  20. Claussen N, Le T, Wu S (1989) J Euro Ceram Soc 5:29

    Article  CAS  Google Scholar 

  21. Claussen N, Travitzky NA, Wu S (1990) Ceram Eng Sci Proc 11:806

    Article  CAS  Google Scholar 

  22. Wu S, Holz D, Claussen N (1993) J Am Ceram Soc 76:970

    Article  CAS  Google Scholar 

  23. Claussen N, Wu S, Holz D (1994) J Euro Ceram Soc 14:97

    Article  CAS  Google Scholar 

  24. Boch P, Giry JP (1985) Mater Sci Eng 71:39

    Article  CAS  Google Scholar 

  25. Harris GB (1952) Philos Mag 43:113

    Google Scholar 

  26. Barrett CS, Massalski TB (1978) Structure of metals, crystallographic methods, principles and data, 3rd ed. Permagon Press, New York

    Google Scholar 

  27. Valvoda V, Järvinen M (1990) Powder Diffraction 5:200

    Google Scholar 

  28. Dollase WA (1986) J Appl Cryst 19:267

    Article  CAS  Google Scholar 

  29. Cline JP, Vaudin MD, Blendell JE, Handwerker CA, Jiggetts R, Bowman KJ, Medendorp N (1994) Adv X-Ray Anal 37:473

    CAS  Google Scholar 

  30. Roeder RK, Trumble KP, Bowman KJ (1997) J Am Ceram Soc 80:27

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by AFIRST (French-Israel Association for Scientific and Technological Research) under contract #6052194. The authors would like to acknowledge the previous work of Thierry Carisey who pioneered the concept of texture control in tape-cast alumina while supported by the Government of France as a CSN at Technion. The authors would also like to thank Dr. Suxing Wu for his unstinting help in developing RBAO and RBM processing for laminated systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, M., Zhi, D. & Brandon, D.G. Oxide ceramic laminates with highly textured α-alumina interlayers: I. Texture control and laminate formation. J Mater Sci 41, 7425–7436 (2006). https://doi.org/10.1007/s10853-006-0808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0808-y

Keywords

Navigation