Skip to main content
Log in

Long-term oxidation kinetics of aluminide coatings on alloy steels by low temperature pack cementation process

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The long-term oxidation kinetics of the P92 steel and iron aluminide diffusion coating formed on its surface by the pack cementation process have been investigated at 650 °C over a period of more than 7000 h both in 100% steam and in air under normal one atmospheric pressure by intermittent weight measurement at room temperature. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques were used to analyse the oxidised surfaces. For the P92 steel substrate, the scale formed by oxidation is largely magnetite (Fe3O4) in steam and haematite (Fe2O3) in air. Despite this difference in the type of oxide scales formed, it was found that the long-term oxidation kinetics of the P92 steel substrate in both steam and air can be described by a logarithmic time relationship: Δm t = k lln(t/t° + 1); the constants k l and t° were subsequently determined using a closest fit process for oxidations in steam and air. For the coating, the oxide scale formed in both steam and air was Al2O3, which provided the long-term oxidation resistance. It was observed that the long-term oxidation kinetics of the coating in both steam and air can be best described by Δm t = Δm 0 + k c t 1/3; the rate constant k c of oxidation in steam and air was then determined by the least squares method. For both the P92 steel substrate and coating, the rate of oxidation is faster in steam than in air at 650 °C particularly in the case of the P92 steel substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Viswanathan R, Bakker W (2001) J Mater Eng Performance 10(1):81–95

    Article  CAS  Google Scholar 

  2. Ennis PJ, Zielinska-Lipiec A, Wachter O, Czyrska-Filemonowicz A (1997) Acta Mater 45(12):4901

    Article  CAS  Google Scholar 

  3. Zhang JG, Noble FW, Eyre BL (1991) Mater Sci Technol 7:315

    CAS  Google Scholar 

  4. Aguero A, Garciade Blas J, Muelas R, Sanchez A, Tripas S (2001) Mater Sci Forum 369–372:939

    Article  Google Scholar 

  5. Xiang ZD, Datta PK (2003) Surface Coatings Technol 179:95

    Article  CAS  Google Scholar 

  6. Xiang ZD, Burnell-Gray JS, Datta PK (2001) J Mater Sci 36:5673

    Article  CAS  Google Scholar 

  7. Xiang ZD, Burnell-Gray JS, Datta PK (2001) Surface Eng 17(4):287

    Article  CAS  Google Scholar 

  8. Kipkemoi J, Tsipas D (1996) J Mater Sci 31:6247

    Article  CAS  Google Scholar 

  9. Land CE (1985) Jpn J Appl Phys 24(1):134

    CAS  Google Scholar 

  10. Tortorelli PF, Natesan K (1998) Mater Sci Eng A258:115

    CAS  Google Scholar 

  11. Mevrel R, Duret C, Pichoir R (1986) Mater Sci Techol 2(3):201

    CAS  Google Scholar 

  12. Levin L, Ginzburge A, Klinger L, Werber T, Katsman A, Schaaf P (1998) Surface Coatings Technol 106:209

    Article  CAS  Google Scholar 

  13. Soliman HM, Mohamed KE, Abd El-Azim ME, Hammad FH (1997) J Mater Sci Technol 13:383

    CAS  Google Scholar 

  14. Hippsley CA, Haworth NP (1988) Mater Sci Technol 4:791

    CAS  Google Scholar 

  15. Saroja S, Parameswaran P, Vijayalakshmi M, Raghunathan VS (1995) Acta Mater 43:2985

    Article  CAS  Google Scholar 

  16. Xiang ZD, Datta PK (2005) J Mater Sci 40:1959

    Article  CAS  Google Scholar 

  17. Xiang ZD, Datta PK (2004) Surface Coatings Technol 184:108

    Article  CAS  Google Scholar 

  18. Mott NF (1940) Trans Faraday Soc 35:472

    Article  Google Scholar 

  19. Pieraggi B (1987) Oxidation Met 27:177

    Article  CAS  Google Scholar 

  20. Quadakkers WJ, Naumenko D, Wessel E, Kochubey V, Singheiser L (2004) Oxidation of Metals, 61(1/2):17

    Article  CAS  Google Scholar 

  21. Lui Z, Gao W, He Y (2000) Oxidation Metals 53(3/4):341

    Article  Google Scholar 

  22. Vernon WHJ, Akeroyd EI, Stroud EG (1939) J Inst Metals 65:301

    Google Scholar 

  23. Xiang ZD, Rose S, Datta PK (2005) Mater Sci Technol 21(10):1111

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the European Commission for funding this research under the SUPERCOAT programme contract ENK5-CT-2002-00608 (SUPERCOAT). They also wish to thank Mr. B. Best for his help in the EDS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. D. Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z.D., Rose, S.R. & Datta, P.K. Long-term oxidation kinetics of aluminide coatings on alloy steels by low temperature pack cementation process. J Mater Sci 41, 7353–7360 (2006). https://doi.org/10.1007/s10853-006-0806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0806-0

Keywords

Navigation