Skip to main content
Log in

Characterization of Ba0.9Sr0.1TiO3 prepared by low temperature chloride aqueous synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ba0.9Sr0.1TiO3 powder was processed at 80°C by reacting Ti sol in aqueous solutions that contained BaCl2, SrCl2 and NaOH at atmospheric pressure. Well-crystallized, spherical, nanosizes powders were formed by this method. The powders were found to have a cubic structure, which was retained even after heating at 900°C. Sintering at 1400°C, led to the formation of a tetragonal structure with a secondary phase of Ba6Ti17O40. Abrupt grain growth was observed at 1400°C. The electrical response of the sample sintered at 1400°C has three electrically different regions. Each region of the sample is represented by different RC element. Element 1 (R 1 C 1) is the most resistive and its capacitance ishigh (0.5 nFcm−1) indicating a thin region, probably the grain boundary. Element 2 (R 2 C 2) shows a smaller resistance value compared to element 1. The capacitance value of element 2 is temperature-dependent and displays a Curie–Weiss behaviour, indicative of a ferroelectric material above T c. The lower capacitance of C 2 (15 pFcm−1) indicates that it is a much thicker region than element 1 and can be assigned as a ferroelectric bulk region. Element 3 is probably an electrode effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haertling GH (1999) J Am Ceram Soc 82:797

    Article  CAS  Google Scholar 

  2. Sengupta LC, Ngo E, O’Day ME, Laccto R (1995) Proc. 1994 IEEE 13th Int. Symp. 622

  3. Zhang T, Ni H (2002) Sensor Actuator A 100:252

    Article  CAS  Google Scholar 

  4. Whatmore RW (1991) Ferroelectrics 118:241

    Article  CAS  Google Scholar 

  5. Khan M, Burks DP, Burn I, Schulze WA (1988) In: Levinson LM (ed) Electronic ceramics. Marcel Dekker, New York, p. 191

  6. Qutzourhit A, Trefny JU, Kito T, Yarar B, Naziripour A, Hermann AM (1995) Thin Solid Films 259:218

    Article  Google Scholar 

  7. Dietz GW, Schumacher M, Waser R, Streiffer SK, Basceri C, Kingon AI (1997) J Appl Phys 82:2359

    Article  CAS  Google Scholar 

  8. Jeon JH, Hahn YD, Kim HD (2001) J Euro Ceram Soc 21:1653

    Article  CAS  Google Scholar 

  9. Komarneni S, Li QH, Stefansson KM, Roy R (1993) J Mater Res 8:3176

    Article  CAS  Google Scholar 

  10. Gallagher PK, Schrey F, DiMarcello FV (1963) J Am Ceram Soc 46:350

    Google Scholar 

  11. Schrey F (1965) J Am Ceram Soc 48:401

    Article  CAS  Google Scholar 

  12. Selvam IP, Kumar V (2002) Mater Lett 56:1089

    Article  Google Scholar 

  13. Thakur OP, Prakash C, Agrawal DK (2002) Mater Lett 56:970

    Article  CAS  Google Scholar 

  14. Roeder RK, Slamovich EB (1999) J Am Ceram Soc 82:1665

    Article  CAS  Google Scholar 

  15. Khollam YB, Bhoraskar SV, Deshpande SB, Potdar HS, Pavaskar NR, Sainkar SR, Date SK (2003) Mater Lett 57:1871

    Article  CAS  Google Scholar 

  16. Urban JJ, Yun WS, Gu Q, Park HK (2002) J Am Chem Soc 124:1186

    Article  CAS  Google Scholar 

  17. O’Brien S, Brus L, Murray CB (2001) J Am Chem Soc 123:12085

    Article  Google Scholar 

  18. Hernandez BA, Chang KS, Fisher ER, Dorhout PK (2002) Chem Mater 14:480

    Article  CAS  Google Scholar 

  19. Perez-Maqueda LA, Dianez MJ, Gotor FJ, Sayagues MJ, Real C, Criado JM (2003) J Mater Chem 13:2234

    Article  CAS  Google Scholar 

  20. Urban JJ, Spanier JE, Ouyang L, Yun WS, Park HK (2003) Adv Mater 15:423

    Article  CAS  Google Scholar 

  21. Wada S, Tsurumi T, Chikamori H, Noma T, Suzuki T (2001) J Crystal Growth 229:433

    Article  CAS  Google Scholar 

  22. Gherardi P, Matijevic E (1988) Colloids Surf 32:257

    Article  CAS  Google Scholar 

  23. Cho JH, Kuwabara M (2004) J Euro Ceram Soc 24:2959

    Article  CAS  Google Scholar 

  24. Irvine JTS, Sinclair DC, West AR (1990) Adv Mater 2:132

    Article  CAS  Google Scholar 

  25. Sinclair DC, Finlay DM, West AR (2000) Int Ceram 2:33

    Google Scholar 

  26. Sinclair DC, West AR (1989) J Appl Phys 66:3850

    Article  CAS  Google Scholar 

  27. Srimala S., Ahmad Fauzi MN, Zainal Arifin A, Radzali O (2004) JIMM 5:33

    Google Scholar 

  28. Xia CT, Shi EW, Zhong WZ, Guo JK (1995) J Euro Ceram Soc 15:1171

    Article  CAS  Google Scholar 

  29. Moon J, Suvaci E, Li T, Costantino SA, Adair JH (2002) J Euro Ceram Soc 22:809

    Article  CAS  Google Scholar 

  30. Testino A, Buscaglia MT, Viviani M, Buscaglia V, Nanni P (2004) J Am Ceram Soc 87:79

    Article  CAS  Google Scholar 

  31. Lee SB, Sigle W, Ruhle M (2002) Acta Mater 50:2151

    Article  CAS  Google Scholar 

  32. Henning DFK, Janssen R, Reynen PJL (1987) J Am Ceram Soc 70:23

    Article  Google Scholar 

  33. Rios PR, Yamamoto T, Kondo T, Sakuma T (1998) Acta Mater 46:1617

    Article  CAS  Google Scholar 

  34. Lee BK, Chung SY, Kang SJL (2000) J Am Ceram Soc 83:2858

    Article  CAS  Google Scholar 

  35. Morrison FD, Sinclair DC, Skakle JMS, West AR (1998) J Am Ceram Soc 81:1957

    Article  CAS  Google Scholar 

  36. West AR (1984) Solid state chemistry and applications. John Wiley & Sons, Chichester, p. 281

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srimala Sreekantan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreekantan, S., Noor, A.F.M., Ahmad, Z.A. et al. Characterization of Ba0.9Sr0.1TiO3 prepared by low temperature chloride aqueous synthesis. J Mater Sci 42, 2492–2498 (2007). https://doi.org/10.1007/s10853-006-0797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0797-x

Keywords

Navigation