Journal of Materials Science

, Volume 42, Issue 13, pp 4738–4744 | Cite as

Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: effect of barrier layer

  • Gaurav Sharma
  • Michael V. Pishko
  • Craig A. GrimesEmail author


Deposition into nanoporous alumina membranes is widely used for nanowire fabrication. Herein using AC electrodeposition ternary Fe–Co–Ni nanowires are fabricated within the nanoscale-pores of alumina membranes. Using an electrodeposition frequency of 1,000 Hz, 15 Vrms, consistently and repeatably yield nanowire arrays over membranes several cm2 in extent. Electrochemical Impedance Spectroscopy (EIS) is used to explain the effects of AC electrodeposition frequency. The impedance of the residual alumina barrier layer, separating the underlying aluminum metal and the nanoporous membrane, decreases drastically with electrodeposition frequency facilitating uniform pore-filling of samples several cm2 in area. Anodic polarization studies on thin films having alloy compositions identical to the nanowires display excellent corrosion resistance properties.


Electrochemical Impedance Spectroscopy Barrier Layer High Resolution Transmission Electron Microscopy Nanowire Array Anodization Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support of this work under NIH grant NIH-1R01EB000684-01.


  1. 1.
    O’Sullivan JP, Wood GC (1970) Proc R Soc Lond Ser A Math Phys Sci 317:511CrossRefGoogle Scholar
  2. 2.
    Jessensky O, Muller F, Gosele U (1998) Appl Phys Lett 72:1173CrossRefGoogle Scholar
  3. 3.
    Masuda H, Yamada H, Satoh M, Asoh H (1997) Appl Phys Lett 71:2770CrossRefGoogle Scholar
  4. 4.
    Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Science 261:1316CrossRefGoogle Scholar
  5. 5.
    Paulus PM, Luis F, Kroll M, Schmid G, de Jongh LJ (2001) J Magn Magn Mater 224:180CrossRefGoogle Scholar
  6. 6.
    Fodor PS, Tsoi GM, Wenger LE (2002) J Appl Phys 91:8186CrossRefGoogle Scholar
  7. 7.
    Zhu H, Yang S, Ni G, Yu D, Du Y (2001) Scripta Mater 44:2291CrossRefGoogle Scholar
  8. 8.
    Khan HR, Petrikowski K (2000) J Magn Magn Mater 215:526CrossRefGoogle Scholar
  9. 9.
    Sharma G, Grimes CA (2004) J Mater Res 19:3695CrossRefGoogle Scholar
  10. 10.
    Shimizu K, Kobayashi K, Thompson GE, Wood GC (1992) Philos Mag A 66:643Google Scholar
  11. 11.
    Zhang Y, Li G, Wu Y, Zhang B., Song W, Zhang L (2002) Adv Mater 14:1227CrossRefGoogle Scholar
  12. 12.
    Li Y, Cheng GS, Zhang LD (2000) J Mater Res 15:2305Google Scholar
  13. 13.
    Yoo W-C, Lee J-K (2004) Adv Mater 13:1097CrossRefGoogle Scholar
  14. 14.
    Pang YT, Meng GW, Zhang Y, Fang Q, Zhang LD (2003) Appl Phys A-Mater 76:533CrossRefGoogle Scholar
  15. 15.
    Pang YT, Meng GW, Zhang LD, Shan WJ, Gao XY, Zhao AW, Mao YQ (2002) J Phys: Condens Matter 14:11729CrossRefGoogle Scholar
  16. 16.
    Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039CrossRefGoogle Scholar
  17. 17.
    Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gosele U (2001) Appl Phys Lett 79:1360CrossRefGoogle Scholar
  18. 18.
    Nielsch K, Muller F, Li AP, Gosele U (2000) Adv Mater 12:582CrossRefGoogle Scholar
  19. 19.
    Oh HJ, Jeong Y, Suh SJ, Kim YJ, Chi CO (2003) J Phys Chem Solids 64:2219CrossRefGoogle Scholar
  20. 20.
    Oh HJ, Kim JG, Jeong YS, Chi CS (2000) Jpn J Appl Phys 39:6690CrossRefGoogle Scholar
  21. 21.
    Huansota A, Alonso JC, Ortiz A (2001) Thin Solid Films 401:284CrossRefGoogle Scholar
  22. 22.
    Prieto AL, Sander MS, Martin-Gonzalez MS, Gronsky R, Sands T, Stacy AM (2001) J Am Chem Soc 123:7160CrossRefGoogle Scholar
  23. 23.
    Bocchetta P, Sunseri C, Bottino A, Capannelli G, Chiavarotti G, Piazza S, Di Quarto F (2002) J Appl Electrochem 32:977CrossRefGoogle Scholar
  24. 24.
    Liu X, Zangari G, Shen L (2000) J Appl Phys 87:5410CrossRefGoogle Scholar
  25. 25.
    Sharma G, Mor GK, Varghese OK, Paulose M, Grimes CA (2004) J Nanosci Nanotechnol 4:738CrossRefGoogle Scholar
  26. 26.
    Jen SU, Chiang HP, Chung CM, Kao MN (2001) J Magn Magn Mater 236:312CrossRefGoogle Scholar
  27. 27.
    Liu X, Evans P, Zangari G (2001) J Magn Magn Mater 226:2073CrossRefGoogle Scholar
  28. 28.
    Schiller CA, Strunz W (2001) Electrochim Acta 46:3619CrossRefGoogle Scholar
  29. 29.
    Macdonald JR (1987) Impedance spectroscopy, emphasizing solid materials and systems. A Wiley-Interscience Publication, New York, p 90Google Scholar
  30. 30.
    Hebard AF, Ajuria SA, Eick RH (1987) Appl Phys Lett 51:1349CrossRefGoogle Scholar
  31. 31.
    McCarthy KT, Arnason SB, Hebard AF (1999) Appl Phys Lett 74:302CrossRefGoogle Scholar
  32. 32.
    Paunovic M, Schlesinger M (1998) Fundamentals of electrochemical deposition. A Wiley Interscience Publication, New YorkGoogle Scholar
  33. 33.
    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) Nature 392:796CrossRefGoogle Scholar
  34. 34.
    Osaka T, Yokoshima T (2004) Corros Eng Sci Technol 39:38CrossRefGoogle Scholar
  35. 35.
    Saito M, Yamada K, Ohashi K, Yasue Y, Sogawa Y, Osaka T (1999) J Electrochem Soc 146:2845CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Gaurav Sharma
    • 1
  • Michael V. Pishko
    • 2
  • Craig A. Grimes
    • 1
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Department of Electrical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations