Advertisement

Journal of Materials Science

, Volume 42, Issue 13, pp 4753–4756 | Cite as

Annealing kinetics of gold and iron–gold complex

  • Akbar AliEmail author
  • Abdul Majid
Article

Abstract

Thermally induced defects in heat treated and then quenched in water n-silicon samples have been studied using deep level transient spectroscopy. Two deep levels at energies E c-0.55 eV, and E c-0.23 eV are observed in high concentration. The emission rate signature and annealing characteristics of energy state E c-0.55 eV identify it as Au(A). During annealing a level emerges at energy position E c-0.35 eV. This level has been identified as Au–Fe complex. Au(A) and Au–Fe showed an interesting reversible reaction in temperature range 175 °C–325 °C which follows the following theoretical relation that adds a new parameter in identifying Au(A) and Au–Fe complex.
$$ y = y_{\hbox{0}}\; \pm \;{\hbox{(2}}A{\hbox{/}}\pi {\hbox{)[}}W{\hbox{/\{4(}}x - x_{\hbox{c}} {\hbox{)}}^{\hbox{2}} + W^{\hbox{2}} {\hbox{\}]}}{\hbox{.}} $$
It is also noted that E c-0.55 eV and E c-0.23 eV contribute to the formation of Au–Fe complex.

Keywords

Emission Rate Energy Position Deep Level Transient Spectroscopy Isochronal Annealing Gold Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Pakistan Science Foundation (PSF) and Higher education commission (HEC) provided partial support to execute this project.

References

  1. 1.
    ER Weber (1983) Appl Phys A 30:1, Gerson JD, Cheng LJ, Corbett JW (1977) J Appl Phys 48:4821Google Scholar
  2. 2.
    Macdonald D, Geerligs LJ (2004) Appl Phys Lett 85:4061CrossRefGoogle Scholar
  3. 3.
    Tanaka S, Kitagawa H (1998) Jpn J Appl Phys 37:4656CrossRefGoogle Scholar
  4. 4.
    Ali A, Qurashi US, Zafar Iqbal M, Zafar N (1997) Semicond Sci Technol 12:1100CrossRefGoogle Scholar
  5. 5.
    Istratov AA, Hieslmair H, Weber ER (2000) Appl Phys A 70:489CrossRefGoogle Scholar
  6. 6.
    Geerligs LJ, Daniel Macdonald (2004) Appl Phys Lett 85:5227CrossRefGoogle Scholar
  7. 7.
    SIA, International technology roadmap for semiconductors, http://www.itrs.net/ntrs/publntrs.nsf, http://www.sematech.org
  8. 8.
    Istratov AA, Hieslmair H, Weber ER (1999) Appl Phys A 69:13CrossRefGoogle Scholar
  9. 9.
    Bailey J, Weber ER (1993) Phys Stat Sol(a) 137:515CrossRefGoogle Scholar
  10. 10.
    Gilles D, Weber ER, Hahn S (1990) Phys Rev Lett 64:196CrossRefGoogle Scholar
  11. 11.
    Lang DV (1974) J Appl Phys 45:3023CrossRefGoogle Scholar
  12. 12.
    Ali A, Zafar Iqbal M, Baber N (1995) J Appl Phys 77:5572CrossRefGoogle Scholar
  13. 13.
    Brotherton SD, Bicknell J (1978) J Appl Phys 49:667CrossRefGoogle Scholar
  14. 14.
    Brotherton SD, Bradley P, Gill A, Weber ER (1984) J Appl Phys 55:952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics, Advance Materials Physics LabQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations