Advertisement

Journal of Materials Science

, Volume 42, Issue 13, pp 4801–4809 | Cite as

Modulus spectroscopy of lead potassium titanium niobate (Pb0.95K0.1Ti0.25Nb1.8O6) ceramics

  • Konapala Sambasiva RaoEmail author
  • Prayaga Murali Krishna
  • Dasari Madhava Prasad
  • D. Gangadharudu
Article

Abstract

The modulus Spectroscopy of Lead Potassium Titanium Niobate (Pb0.95K0.1Ti0.25Nb1.8O6, PKTN) Ceramics was investigated in the frequency range from 45 Hz to 5 MHz and the temperature, from 30 to 600 °C. XRD analysis in PKTN indicated a orthorhombic structure with lattice parameters a = 18.0809 Å, b = 18.1909 Å and c = 3.6002 Å. The dielectric anomaly with a peak was observed at 510 °C. Variation of εI and εII with frequency at different temperatures exhibit high values, which reflects the effect of space charge polarization and/or conduction ion motion. The electrical relaxation in ionically conducting PKTN ceramic analyzed in terms of Impedance and Modulus formalism. The Cole–Cole plots of impedance were drawn at different temperatures. The dielectric modulus, which describes the dielectric relaxation behaviour is fitted to the Kohlrausch exponential function. Near the phase transition temperature, a stretched exponential parameter β indicating the degree of distribution of the relaxation time has a small value. From the AC conductivity measurements the activation energy near phase transition temperature (T C°C) has been found to different from that of the above and below T C. The temperature dependence of electrical modulus has been studied and results are discussed.

Keywords

Phase Transition Temperature Boundary Resistance Electrical Modulus Cole Plot Space Charge Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors K.S. Rao and P. Murali Krishna thanks DRDO—New Delhi, for sanction of a research project and junior research fellowship.

Reference

  1. 1.
    Yamada TY (1975) J Appl Phys 46:2894CrossRefGoogle Scholar
  2. 2.
    O’Connell RM (1980) J Appl Phys 49:3324CrossRefGoogle Scholar
  3. 3.
    Panday RK, Sridhar U (1983) Ferroelectrics 51:681Google Scholar
  4. 4.
    Oualla M, Zegzouti A, Elaatmani M., Daoud M, Mezzane D, Gagou Y, Saint-gregoire P (2003) Ferroelectrics 29:133Google Scholar
  5. 5.
    Dong M, Raeu JM, Ravez J, Joo G, Hagenmuller P (1995) J Solid State chem 116:185CrossRefGoogle Scholar
  6. 6.
    ZhigaoLu, Bonnet JP, Ravez J, Reau JM, Hagenmuller P (1992) J Phys Chem Solids 53:1Google Scholar
  7. 7.
    Hodge IM, Ingram MD, West AR (1976) J Electronal Chem 74:125CrossRefGoogle Scholar
  8. 8.
    Jana P, Kallur VA, Drummond MA, Niigli S, Pandey RK (1992) IEEE 374Google Scholar
  9. 9.
    Neurgoanker RR, Oliver JR, Cory WK (1983) Mat Res Bull 18:735CrossRefGoogle Scholar
  10. 10.
    SambasivaRao K, Subramanyam ASV, Murali Mohana Rao S (1997) Ferroelectrics 109:215Google Scholar
  11. 11.
    SabasivaRao K, Prasad TNKV, Subramanyam ASV, Lee J-H, Kim J-J, Cho S-H (2003) Mat Sci Engs B 98:279CrossRefGoogle Scholar
  12. 12.
    Kim JS, Song TK (2001) J Phys Soc Japan 70:3419CrossRefGoogle Scholar
  13. 13.
    Nobre MAL, Lanfredi S (2001) Mater Lett 50:322CrossRefGoogle Scholar
  14. 14.
    Nobre MAL, Lan fredi S (2001) J Phys Chem Chem Solids 62:1999CrossRefGoogle Scholar
  15. 15.
    Nobre MAL, Lan fredi S (2001) Mater Lett 47:362CrossRefGoogle Scholar
  16. 16.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
  17. 17.
    Bauerle JE (1969) J Phys Chem Chem Solids 30:2657CrossRefGoogle Scholar
  18. 18.
    Nagai RL, Leon C (1999) Solid State Ionics 125:81CrossRefGoogle Scholar
  19. 19.
    Pissis P, Kyritsis A (1997) Solid State Ionics 97:105CrossRefGoogle Scholar
  20. 20.
    Shilov VV, Shevchenko VV, Pissis P, Kyritsis A, Georgoussis G, Gommza YuP, Nesin SD, Klimenko NS (2000) J Non-Cryst Solids 275:116CrossRefGoogle Scholar
  21. 21.
    Sidebottom DL, Green PF, Brow RK (1995) J Non-Cryst Solids 183:151CrossRefGoogle Scholar
  22. 22.
    Williams G, Watts DC (1970) Trans Fraday Soc 23:625Google Scholar
  23. 23.
    Nagai KL, Martin SW (1989) Phys Rev B40:10050Google Scholar
  24. 24.
    Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:639CrossRefGoogle Scholar
  25. 25.
    Reau JM, Rossignol S, Tanguy B, Paris MA, Rojo JM, Sanz J (1995) Solid State Ionics 80:283CrossRefGoogle Scholar
  26. 26.
    Zouari N, Mnif M, Khemakhem H, Mhiri T, Daoud A (1998) Solid State Ionics 110:269CrossRefGoogle Scholar
  27. 27.
    Zhigao Lu, Bonnet JP, Ravez J, Reau JM, Hagenmuller P (1992) Phys Chem Solids 53:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Konapala Sambasiva Rao
    • 1
    Email author
  • Prayaga Murali Krishna
    • 1
  • Dasari Madhava Prasad
    • 1
  • D. Gangadharudu
    • 1
  1. 1.Centre for Piezoelectric Transducer Materials, Physics DepartmentAndhra UniversityVisakhapatnamIndia

Personalised recommendations