Skip to main content
Log in

Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A review on the syntheses and electrical characterization of Y-shaped multi-walled carbon nanotube morphologies is presented. Modified thermal CVD processes, using Ti precursors, are used to grow Y-junctions of different geometries and distribution of catalyst particles. It has been established that novel electrical switching behavior is feasible, where any one of the three branches of the Y-junction can be used for modulating the electrical current flow through the other two branches. Current blocking behavior, leading to perfect rectification, is seen which could be related to the interplay of the carrier lifetime and the transit time. The overall goal is to investigate the possibility of obtaining novel functionality at the nanoscale, which can lead to new device paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mceuen PL (1998) Nature 393:15

    Article  CAS  Google Scholar 

  2. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  3. Yao Z, Postma HWC, Balents L, Dekker C (1999) Nature 402:273

    Article  CAS  Google Scholar 

  4. Collins PG, Avouris P (2000) Sci Am 283:62

    Article  CAS  Google Scholar 

  5. Melechko AV, Merkulov VI, Mcknight TE, Guillorn MA, Klein KL, Lowndes DH, Simpson ML (2005) J Appl Phys 97:041301

    Article  CAS  Google Scholar 

  6. Hone J, Laguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Appl Phys Lett 77:666

    Article  CAS  Google Scholar 

  7. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Nature 386:474

    Article  CAS  Google Scholar 

  8. White CT, Todorov TN (1998) Nature 393:240

    Article  CAS  Google Scholar 

  9. Buitelaar M, Bachtold TNA, Iqbal M, Schönenberger C (2002) Phys Rev Lett 88:156801

    Article  CAS  Google Scholar 

  10. Delaney P, Di Ventra M, Pantelides S (1999) Appl Phys Lett 75:3787

    Article  CAS  Google Scholar 

  11. Bockrath M, Cobden DH, Mceuen PL, Chopra NG, Zettl A, Thess A, Smalley RE (1997) Science 275:1922

    Article  CAS  Google Scholar 

  12. Tans SJ, Verschueren ARM, Dekker C (1998) Nature 393:49

    Article  CAS  Google Scholar 

  13. Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Science 293:76

    Article  CAS  Google Scholar 

  14. Freitag M, Radosavljevic M, Zhou Y, Johnson AT (2001) Appl Phys Lett 79:3326

    Article  CAS  Google Scholar 

  15. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Science 289:94

    Article  CAS  Google Scholar 

  16. Radosavljevic M, Freitag M, Thadani KV, Johnson AT (2002) arxiv:cond-mat/0206392

  17. Martel R, Derycke V, Appenzeller J, Wind S, Avouris P (2002) In: Design automation conference. ACM, New Orleans, pp 94–98

  18. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Nature 424:654

    Article  CAS  Google Scholar 

  19. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Science 294:1317

    Article  CAS  Google Scholar 

  20. Bandaru PR, Daraio C, Jin S, Rao AM (2005) Nat Mater 4:663

    Article  CAS  Google Scholar 

  21. Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Phys Rev Lett 86:3128

    Article  CAS  Google Scholar 

  22. Kim P, Shi L, Majumdar A, Mceuen PL (2001) Phys Rev Lett 87:215502

    Article  CAS  Google Scholar 

  23. Wesstrom JO (1999) Phys Rev Lett 82:2564

    Article  CAS  Google Scholar 

  24. Zhou D, Seraphin S (1995) Chem Phys Lett 238:286

    Article  Google Scholar 

  25. Li WZ, Wen JG, Ren ZF (2001) Appl Phys Lett 79:1879

    Article  CAS  Google Scholar 

  26. Papadapoulos C, Rakitin A, Li J, Vedeneev AS, Xu JM (2000) Phys Rev Lett 85:3476

    Article  Google Scholar 

  27. Satishkumar BC, Thomas PJ, Govindaraj A, Rao CNR (2000) Appl Phys Lett 77:2530

    Article  CAS  Google Scholar 

  28. Park J, Daraio C, Jin S, Bandaru PR, Gaillard J, Rao AM (2006) Appl Phys Lett 88:243113

    Article  CAS  Google Scholar 

  29. Forro L, Schonenberger C (2001) In: Dresselhaus MS, Dresselhaus G, Avouris P (eds) Carbon nanotubes—topics in applied physics. Springer, Berlin Heidelberg New York

  30. Bachtold A, Strunk C, Salvetat JP, Bonard JM, Forro L, Nussbaumer T, Schonenberger C (1999) Nature 397:673

    Article  CAS  Google Scholar 

  31. Tsukagoshi K, Watanabe E, Yagi I, Yoneya N, Aoyagi Y (2004) New J Phys 6:1

    Article  CAS  Google Scholar 

  32. Palm T, Thylen L (1992) Appl Phys Lett 60:237

    Article  Google Scholar 

  33. Worschech L, Xu HQ, Forchel A, Samuelson L (2001) Appl Phys Lett 79:3287

    Article  CAS  Google Scholar 

  34. Lewen R, Maximov I, Shorubalko I, Samuelson L, Thylen L, Xu HQ (2002) J Appl Phys 91:2398

    Article  CAS  Google Scholar 

  35. Hieke K, Ulfward M (2000) Phys Rev B 62:16727

    Article  CAS  Google Scholar 

  36. Xu HQ (2001) Appl Phys Lett 78:2064

    Article  CAS  Google Scholar 

  37. Shorubalko I, Xu HQ, Omling P, Samuelson L (2003) Appl Phys Lett 83:2369

    Article  CAS  Google Scholar 

  38. Song AM, Lorke A, Kriele A, Kotthaus JP, Wegscheider W, Bichler M (1998) Phys Rev Lett 80:3831

    Article  CAS  Google Scholar 

  39. Andriotis AN, Menon M, Srivastava D, Chernozatonski L (2001) Phys Rev Lett 87:066802

    Article  CAS  Google Scholar 

  40. Andriotis AN, Srivastava D, Menon M (2003) Appl Phys Lett 83:1674

    Article  CAS  Google Scholar 

  41. Tian W, Datta S, Hong S, Reifenberger R, Henderson JI, Kubiak CP (1998) J Chem Phys 109:2874

    Article  CAS  Google Scholar 

  42. Meunier V, Nardelli MB, Bernholc J, Zacharia T, Charlier JC (2002) Appl Phys Lett 81:5234

    Article  CAS  Google Scholar 

  43. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Phys Rev Lett 89:106801

    Article  CAS  Google Scholar 

  44. Scuseria GE (1992) Chem Phys Lett 195:534

    Article  CAS  Google Scholar 

  45. Andriotis AN, Menon M, Srivastava D, Chernozatonski L (2002) Phys Rev B 65:165416

    Article  CAS  Google Scholar 

  46. Davies JH (1998) The physics of low-dimensional semiconductors. Cambridge University Press, New York

    Google Scholar 

  47. Xu HQ (2001) Appl Phys Lett 80:853

    Article  CAS  Google Scholar 

  48. Csontos D, Xu HQ (2003) Phys Rev B 67:235322

    Article  CAS  Google Scholar 

  49. Xu HQ (2002) Physica E 13:942

    Article  Google Scholar 

  50. Palm T, Thylen L (1996) J Appl Phys 79:8076

    Article  CAS  Google Scholar 

  51. Crespi VH (1998) Phys Rev B 58:12671

    Article  CAS  Google Scholar 

  52. Teo KBK, Singh C, Chhowalla M, Milne WI (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch

  53. Gothard N, Daraio C, Gaillard J, Zidan R, Jin S, Rao AM (2004) Nanoletters 4:213

    CAS  Google Scholar 

  54. Song AM, Omling P, Samuelson L, Seifert W, Shorubalko I, Zirath H (2001) Appl Phys Lett 79:1357

    Article  CAS  Google Scholar 

  55. Fuhrer MS, Nygard J, Shih L, Forero M, Yoon YG, Mazzoni MSC, Choi HJ, Ihm J, Louie S, Zettl A, Mceuen PL (2000) Science 288:494

    Article  CAS  Google Scholar 

  56. Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H, Ajayan PM (2002) Phys Rev Lett 89:075505

    Article  CAS  Google Scholar 

  57. Ting JM, Chang CC (2002) Appl Phys Lett 80:324

    Article  CAS  Google Scholar 

  58. Banhart F (1999) Rep Prog Phys 62:1181

    Article  CAS  Google Scholar 

  59. Bachtold A, Henny M, Terrier C, Strunk C, Schönenberger C, Salvetat JP, Bonard JM, Forro L (1998) Appl Phys Lett 73:274

    Article  CAS  Google Scholar 

  60. Xu HQ (2005) Nat Mater 4:649

    Article  CAS  Google Scholar 

  61. Beale M, Mackay P (1992) Philos Mag B 65:47

    CAS  Google Scholar 

  62. Bandaru PR, Sands TD, Kubota Y, Marinero EE (1998) Appl Phys Lett 72:2337

    Article  CAS  Google Scholar 

  63. Muller RS, Kamins TI (1986) Device electronics for integrated circuits. Wiley, New York

    Google Scholar 

  64. Burke PJ (2003) IEEE Trans Nanotechnol 2:55

    Article  Google Scholar 

  65. Burke PJ (2002) IEEE Trans Nanotechnol 1:129

    Article  Google Scholar 

  66. Guo J, Datta S, Lundstrom M, Kim BM, Mceuen PL, Javey A, Dai H, Kim H, Mcintyre P (2002) In: International electron devices meeting (IEDM), San Francisco, p 711

  67. Kosaka H, Rao DS, Robinson H, Bandaru PR, Sakamoto T, Yablonovitch E (2002) Phys Rev B Rapid Commun 65:201307

    Google Scholar 

  68. Huang XMH, Caldwell R, Huang L, Jun SC, Huang M, Sfeir MY, O’Brien SP, Hone J (2005) NanoLetters 5:1515

    CAS  Google Scholar 

  69. Liu J, Casavant MJ, Cox M, Walters DA, Boul P, Lu W, Rimberg AJ, Smith KA, Colbert D, Smalley RE (1999) Chem Phys Lett 303:125

    Article  CAS  Google Scholar 

  70. Rao SG, Huang L, Setyawan W, Hong S (2003) Nature 425:36

    Article  CAS  Google Scholar 

  71. Joselevich E, Lieber CM (2002) NanoLetters 2:1137

    CAS  Google Scholar 

  72. Huang Y, Duan X, Wei Q, Lieber CM (2001) Science 291:630

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar R. Bandaru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandaru, P.R. Electrical characterization of carbon nanotube Y-junctions: a foundation for new nanoelectronics. J Mater Sci 42, 1809–1818 (2007). https://doi.org/10.1007/s10853-006-0729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0729-9

Keywords

Navigation