Skip to main content
Log in

Interface structure and strain development during compression tests of Al2O3/Nb/Al2O3 sandwiches

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interface structure of an Al2O3/Nb/Al2O3 sandwich produced by solid-state diffusion bonding was investigated in detail by various transmission electron microscopy (TEM) methods. The joint possessed at one interface a \( {\hbox{(110)}}_{{{{\rm Nb}}}} {{ \,||\, (0001)}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \), \( {\hbox{[1{{$\bar{1}$}}0]}}_{{{{\rm Nb}}}} {{ \,||\, [2{{\bar{1}}}{{\bar{1}}}0]}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \), and on the other interface a \( {\hbox{(1{{${1}$}}0)}}_{{{{\rm Nb}}}} {{ \,||\, (0001)}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) and \( {\hbox{[1{{$\bar{1}$}}0]}}_{{{{\rm Nb}}}} {{ || [0{{\bar{1}}}{{\bar{1}}}0]}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) orientation relationship. At both interfaces, misfit dislocations formed to compensate the lattice mismatch as found by high-resolution transmission electron microscopy (HRTEM). Electron energy-loss near edge structure (ELNES) studies revealed that the interface is terminating with an Al layer resulting in Al–Nb bonds. Identical sandwiches were investigated on the meso- and macroscopic scale by performing compression tests and simultaneously monitoring the strain development at (001)Nb and \( (1{{\bar{{{1}}}}}0)_{{\rm Nb}} \) crystal faces. The full-field optical strain measurements (FFOM) revealed that the strain is localized at the interfaces when observed at the (001)Nb face while it is along the maximum shear directions of 36–54° inclined to the interface when observed at the \( (1{{\bar{{{1}}}}}0) \) face. The strain localization along a specific maximum shear direction results in the cleavage of Al2O3, always initiating from the interface possessing the \( {\hbox{(110)}}_{{{{\rm Nb}}}} {{ \,||\, (0001)}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) and \( {\hbox{[1{{$\bar{1}$}}0]}}_{{{{\rm Nb}}}} {{ \,||\, [0{{\bar{1}}}{{\bar{1}}}0]}}_{{{{\rm Al}}_{{{\rm 2}}} {{\rm O}}_{{{\rm 3}}} }} \) orientation relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burger K, Mader W, Rühle M (1987) Ultramicroscopy 22:1

    Article  CAS  Google Scholar 

  2. Mader W (1989) Z Metallkde 80(3):139

    CAS  Google Scholar 

  3. Mayer J, Mader W, Knauss D, Ernst F, Rühle M (1990) Mat Res Soc Symp Proc 183:55

    Article  CAS  Google Scholar 

  4. Mayer J, Flynn CP, Rühle M (1990) Ultramicroscopy 33:51

    Article  CAS  Google Scholar 

  5. Knauss D, Mader W (1991) Ultramicroscopy 37:247

    Article  CAS  Google Scholar 

  6. Mayer J, Gutekunst G, Möbus G, Dura JA, Flynn CP, Rühle M (1992) Acta Metall Mater 40:S217

    Article  CAS  Google Scholar 

  7. Bruley J, Brydson R, Müllejans H, Mayer J, Gutekunst G, Mader W, Knauss D, Rühle M (1994) J Mater Res 9(10):2574

    Article  CAS  Google Scholar 

  8. Vitek V, Gutekunst G, Mayer J, Rühle M (1995) Phil Mag A 71(6):1219

    Article  CAS  Google Scholar 

  9. Kruse C, Finnis MW, Lin JS, Payne MC, Milman VY, De Vita A, Gillan MJ (1996) Phil Mag Lett 73:733

    Article  Google Scholar 

  10. Wagner T, Lorenz M, Rühle M (1996) J Mater Res 11(5):1255

    Article  CAS  Google Scholar 

  11. Gutekunst G, Mayer J, Rühle M (1997) Phil Mag A 75(5):1329

    Article  CAS  Google Scholar 

  12. Gutekunst G, Mayer J, Vitek V, Rühle M (1997) Phil Mag A 75(5):1357

    Article  CAS  Google Scholar 

  13. Finnis MW (1998) Phys Stat Sol A 166:397

    Article  CAS  Google Scholar 

  14. Verdozzi C, Jennison DR, Schultz PA, Sears MP (1999) Phys Rev Lett 82:799

    Article  CAS  Google Scholar 

  15. Levay A, Möbus G, Vitek V, Rühle M, Tichy G (1999) Acta Mater 47(15):4143

    Article  CAS  Google Scholar 

  16. Batyrev I, Alavi A, Finnis M (2000) Phy Rev B 62(7):4698

    Article  CAS  Google Scholar 

  17. Durbin SM, Cunningham JE, Mochel ME, Flynn CP (1981) J Phys F 11:L223

    Article  CAS  Google Scholar 

  18. Mader W (1987) Mat Res Soc Symp Proc 82:403

    Article  CAS  Google Scholar 

  19. Korn D, Elssner G, Cannon RM, Rühle M (2002) Acta Mater 50:3881

    Article  CAS  Google Scholar 

  20. Cannon RM, Korn D, Elssner G, Rühle M (2002) Acta Mater 50:3903

    Article  CAS  Google Scholar 

  21. Soyez G (1996) PhD Thesis, University of Stuttgart

  22. Soyez G, Elssner G, Rühle M, Raj R (1998) Acta Mater 46(10):3571

    Article  CAS  Google Scholar 

  23. Soyez G, Elssner G, Rühle M, Raj R (2000) J Mater Sci 35:1087

    Article  CAS  Google Scholar 

  24. Bartsch M, Zhang Z-F, Scheu C, Rühle M, Messerschmidt U (2004) Z Metallkde 95(9):779

    Article  CAS  Google Scholar 

  25. Liu Y, Brunner D (2002) Z Metallkde 93(5):444

    Article  CAS  Google Scholar 

  26. Liu Y, Kohnle C, Brunner D, Rühle M (2003) Z Metallkde 94(6):694

    Article  CAS  Google Scholar 

  27. Korn D, Elssner G, Fischmeister HF, Rühle M (1992) Acta Metall Mater 40:S355

    Article  CAS  Google Scholar 

  28. Kurtz W (2002) Z Metallkde 93(5):432

    Article  CAS  Google Scholar 

  29. Batyrev I, Alavi A, Finnis M (1999) Faraday Discuss 114:33

    Article  CAS  Google Scholar 

  30. Strecker A, Salzberger U, Mayer J (1993) Prakt Metallogr 30:482

    CAS  Google Scholar 

  31. Müllejans H, Bruley J (1995) J Microscopy 180:12

    Article  Google Scholar 

  32. Scheu C (2002) J Microscopy 205:52

    Article  Google Scholar 

  33. Bitzek L, Wunderlich WE, Mader W (1988) Prakt Met 25:384

    CAS  Google Scholar 

  34. Burger K, Rühle M (1989) Ultramicroscopy 29:88

    Article  CAS  Google Scholar 

  35. Saiz E, Tomsia AP, Cannon RM (1998) In: Tomsia AP, Glaeser AM (eds) Ceramic microstructures: control at the atomic level, Plenum Press

  36. Gao M, Scheu C, Wagner T, Kurtz W, Rühle M (2002) Z Metallkde 93(5):438

    Article  CAS  Google Scholar 

  37. Scheu C (2004) Interface Sci 12(1):127

    Article  CAS  Google Scholar 

  38. Duesbery MS, Foxall RA (1969) Phil Mag 20:719

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. The authors wish to thank M. Bartsch and U. Messerschmidt for a fruitful cooperation within the DFG project and F. Ernst for his contribution to the project application. Helpful discussions with R. Cannon are acknowledged. The authors thank W. Kurtz for the diffusion bonding of the specimen and U. Salzberger for the TEM specimen preparation. The authors also wish to thank G. Dehm for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Scheu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheu, C., Liu, Y., Oh, S.H. et al. Interface structure and strain development during compression tests of Al2O3/Nb/Al2O3 sandwiches. J Mater Sci 41, 7798–7807 (2006). https://doi.org/10.1007/s10853-006-0728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0728-x

Keywords

Navigation