Abstract
Mounting evidence is pointing to some emerging novel behaviors of metals with ultrafine-grain (UFG) and/or nanocrystalline (NC) microstructures. One such novel behavior is related to the thermodynamic and kinetic aspects of plastic response in the UFG/NC regime. Two inter-related parameters, viz., the strain rate sensitivity (SRS) and the activation volumes of plastic deformation, are used as fingerprints for the thermodynamics and kinetics of plastic deformation. Changes of these parameters with grain size may indicate transition of plastic deformation mechanisms. Therefore, investigations of these phenomena may bring out new strategies for ingenious design and synthesis of UFG/NC materials with desirable properties. In this article, we present a critical review on the experimental results and theories associated with the SRS of UFG/NC metals with different lattice structures, and the influences on some constitutive responses.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Hall EO (1951) Proce Phys Soc B, Lond 64:747
Petch NJ (1953) J Iron Steel Institute 174:25
Armstrong RW (1967) In: Rosenfield AR, Hahn GT, Bement ALJ, Jaffee RI (eds) Dislocation dynamics. McGraw-Hill Book Company, NewYork, p 293
Li JCM (1963) Trans Metal Soc AIME 227:239
Ashby MF (1970) Philos Mag 21:399
Volpp T, Goring E, Kuschke W-M, Arzt E (1997) Nanostruct Mater 8:855
El-Sherik AM, Erb U, Palumbo G, Aust KT (1992) Scripta Mater 27:1185
Schuh CA, Nieh TG, Yamasaki T (2002) Scripta Mater 46:735
Koch CC, Narayan J (2001) The inverse Hall–Petch effect-Fact or Artifact? presented at Structure and mechanical properties of nanophase materials-theory and computer simulations v.s.experiments. Boston MA, USA
Nieh TG, Wadsworth J (1991) Scripta Metallurgica et Materialia 25:955
Meyers MA, Mishra A, Benson DJ (2006) Progr Mater Sci 51:427
Koch CC (2002) Nanostructured materials: processing, properties and potential Norwich, Noyes Publications
Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Progr Mater Sci 45:103
Ma E (2006) JOM 58:49
Carreker RP Jr, Hibbard Jr WR (1953) Acta Metallurgica 1:657
Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S (2003) Acta Mater 51:5159
Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng A 381:71
Lu L, Li SX, Lu K (2001) Scripta Mater 45:1163
Hollang L, Thiele E, Holste C, Brunner D (2003) “The influence of temperature and strain rate on the flow stress of ECAP nickel,” presented at 2nd International Conference on Nanomaterials by Severe Plastic Deformation
Chen J, Shi YN, Lu K (2005) J Mater Res 20:2955
Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Scripta Mater 54:1175
Duhamel C, Guerin S, Hytch MJ, Champion Y (2005) Deformation behavior and strain rate sensitivity of nanostructured materials at moderate temperatures. presented at Mechanical properties of nanostructured materials-experiments and modelling: MRS Symp. Proc San Francisco, CA
Torre FD, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957
Torre FD, Spatig P, Schaublin R, Victoria M (2005) Acta Mater 53:2337
Kumar KS, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743
Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Acta Mater 51:387
Li YJ, Zeng XH, Blum W (2004) Acta Mater 52:5009
Li YJ, Valiev RZ, Blum W (2005) Mater Sci Eng A 410–411:451
Wang YM, Ma E (2003) Appl Phys Lett 83:3165
Wei Q, Jiao T, Mathaudhu SN, Ma E, Hartwig KT, Ramesh KT (2003) Mater Sci Eng A 358:266
Wei Q, Jiao T, Ramesh KT, Ma E (2004) Scripta Mater 50:359
Wei Q, Jiao T, Ramesh KT, Ma E, Kecskes LJ, Magness L, Dowding RJ, Kazykhanov VU, Valiev RZ (2006) Acta Mater 54:77
Wei Q, Kecskes LJ, Jiao T, Hartwig KT, Ramesh KT, Ma E (2004) Acta Mater 52:1859
Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykhanov VU, Valiev RZ (2005) Appl Phys Lett 86:101907
Jia D, Ramesh KT, Ma E (2003) Acta Mater 51:3495
Jang D, Atzmon M (2003) J Appl Phys 93:9282
Rodriguez P (2004) Metall Mater Trans A 35:2697
Rodriguez P, Ray SK (1988) Bull Mater Sci 10:133
Armstrong RW (1973) J Sci Industrial Res 32:591
Armstrong RW (1997) –531 50:521
Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT, Valiev RZ (2001) Appl Phys Lett 79:611
Hwang S, Nishimura C, McCormick PG (2001) Scripta Mater 44:1507
Zhang X, Wang H, Scattergood RO, Narayan J, Koch CC, Sergueeva AV, Mukherjee A (2002) Acta Mater 50:4823
Zhang X, Wang H, Scattergood RO, Narayan J, Koch CC, Sergueeva AV, Mukherjee A (2002) Appl Phys Lett 81:823
Conrad H, Narayan J (2002) Acta Mater 50:5067
Karimpoor AA, Erb U, Aust KT, PalumboG (2003) Scripta Mater 49:651
Kocks UF, Argon AS, Ashby MF (1975) Progr Mater Sci 19:1
Chen J, Lu L, Lu K (2006) Scripta Mater 54:1913
Hoppel HW, May J, Goken M (2004) Adva Eng Mater 6:781
Hoppel HW, May J, Eisenlohr P (2005) Zeit fur Metallkunde 96:566
May J, Hoppel HW, Goken M (2005) Scripta Mater 53:189
Witkin D, Han BQ, Lavernia EJ (2005) J Mater Eng Perfor 14:519
Torre FD, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135
Asaro RJ, Suresh S (2005) Acta Mater 53:3369
Conrad H (1965) In: Zackey VF (ed) High-strength materials. New York, Wiley, p 436
Dorn JE, Mitchell JB (1965) In: Zackey VF (ed) High-strength materials. New York, John Wiley & Sons, Inc., p 510
Dorn JE, Rajnak S (1964) Trans Metall Soc AIME 230:1052
Gupta I, Li JCM (1970) Metall Trans 1:2323
Dieter GE (1986) Mechanical metallurgy, 3rd edn. New York, McGraw-Hill
Wang YM, Hamza AV, Ma E (2006) Acta Mater 54:2715
Follansbee PS (1985) In: ASM Metals Handbook, vol 8: American Society of Metals, p 190
Elmustafa AA, Tambwe MF, Stone DS (2002) “Activation volume analysis of plastic deformation in fcc materials using nanoindentation,” presented at Surface Engineering 2002-Synthesis, Characterization and Applications, MRS Fall Meeting, Boston, MA
Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5
Gray III GT, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Nanostruct Mater 9:477
Wang YM, Ma E (2004) Appl Phys Lett 85:2750
Li YJ, Blum W (2005) Phys Status Solidi A 202:R119
Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP, Han K (2005) Acta Mater 53:1521
Lu L, Schwaiger R, Shan ZW, Dao M, Lu K, Suresh S (2005) Acta Mater 53:2169
Jiang ZH, Liu XL, Li GY, Jiang Q, Lian JS (2006) Appl Phys Lett 88:143115
Gu CD, Lian JS, Jiang ZH, Jiang Q (2006) Scripta Mater 54:579
Pan D, Nieh TG, Chen MW (2006) Appl Phys Lett 88:161922
Miyamoto H, Ota K, Mimaki T (2006) Scripta Mater 54:1721
Hoppel HW, May J, Eisenlohr P, Goken M (2005) Zeit fur Metallkunde 96:566
Kalkman AJ, Verbruggen AH, Radelaar S (2002) J Appl Phys 92:6612
Hayes RW, Witkin D, Zhou F, Lavernia EJ (2004) Acta Mater 52:4259
Zehetbauer M, Seumer V (1993) Acta Metallurgica et Materialia 41:577
Malow TR, Koch CC, Miraglia PQ, Murty KL (1998) Mater Sci Eng A 252:36
Jang D, Atzmon M (2006) J Appl Phys 99:083504
Wei Q, Zhang H, Schuster BE, Ramesh KT, Valiev RZ, Kecskes LJ, Dowding RJ (2006) Acta Mater 54:4079
May J, Hoppel HW, Goken M (2006) Mater Sci Forum 503–504:781
Sastry DH, Prasad YVRK, Vasu KI (1970) Metall Trans 1:1827
Conrad H, Hays L, Schoeck G, Wiedersich H (1961) Acta Metall 9:367
Trojanova Z, Lukac P, Szaraz Z (2005) Rev Adva Mater Sci 10:437
Cottrell AH (2002) In: Nabarro FRN, Duesbery MS (eds) Dislocations in solids, vol 11. Elsevier, p vii
Nabarro FRN (1987) Theory of crystal dislocations NewYork, Dover
Cottrell AH, Stokes RJ (1955)Proce Roy Soc A 233
Bailey JE, Hirsch PB (1960) Philosoph Maga 5:485
Basinski ZS (1959) Philosoph Maga 4:393
Narutani T, Takamura J (1991) Acta Metallugica et Materialia 39:2037
Keh AS, Weissmann S (1963) In: Thomas G, Washburn J (eds) Electron microscopy and strength of crystals. New York, Interscience, p 231
Christian JW (1983) Metall Trans A 14:1237
Duesbery MS, Vitek V (1998) Acta Mater 46:1481
Conrad H (1967) 4 TM Canadian. J Phys 45:581
Conrad H (2003) Mater Sci Eng A 341:216
Van Swygenhoven H, Caro A (1998) Phys Rev B 58:11246
Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Phys Rev B 60:22
Rice JR (1992) J Mech Phys Solids 40:239
Van Swygenhoven H, Derlet PM, Froseth A (2006) Acta Mater 54:1975
Cahn JW, Nabarro FRN (2001) Philosoph Maga A 81:1409
Lian JS, Gu CD, Jiang Q, Jiang ZH (2006) J Appl Phys 99:076103
Zhang H, Schuster BE, Wei Q, Ramesh KT (2006) Scripta Mater 64:181
Schuster BE, Wei Q, Zhang H, Ramesh KT (2006) Applied physics letters 88:103112
Hart EW (1967) Acta Metall 15:351
Wang YM, Ma E (2004) Acta Mater 52:1699
Jonas JJ, Holt RA, Coleman CE (1976) Acta Metallurgica 24:911
Tvergaard V, Needleman A (1993) Proce Roy Soc Lond 443A:547
Li HQ, Ebrahimi F (2004) Appl Phys Lett 84:4307
Iwasaki H, Higashi K, Nieh TG (2004) Scripta Mater 50:395
Li H, Ebrahimi F (2006) Acta Materialia 54:2877
McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee A (1999) Nature 398:684
McFadden SX, Zhilyaev AP, Mishra RS, Mukherjee A (2000) Mater Lett 45:345
Wei Q, Jia D, Ramesh KT, Ma E (2002) Appl Phys Lett 81:1240
Wright TW (2002) The physics and mathematics of adiabatic shear bands. Cambridge Press
Magness LS (2002) “An overview of the penetration performances of tungsten and depleted uranium alloy penetrators: ballistic performances and metallographic examinations,” presented at 20th International Symposium on Ballistics, Orlando, Florida
Wei Q, Ramesh KT, Schuster BE, Kecskes LJ, Dowding RJ (2006) JOM 58:40
Acknowledgments
The author is indebted to Professors E. Ma and K. T. Ramesh (Johns Hopkins University) for many illuminating discussions. He is also grateful to Dr. T. W. Wright (US Army Research Lab) for his help in the understanding of the physics and mechanics of adiabatic shear banding. Dr. L. Magness has kindly offered assistance to the author with his knowledge about penetrator performance. Some experimental results presented in this article were obtained at JHU-CAMCS through the support by ARL under the ARMAC-RTP Cooperative Agreement #DAAD19-01-2-0003. Many former colleagues participated in the experimental work, and the author would like to extend his gratitude to Drs. T. Jiao, H.T. Zhang, Y. L. Li, L. J. Kecskes, and Mr. B. E. Schuster. Finally, the author is thankful to Dr. Y. T. Zhu for inviting the author to write this article for the special issue of the Journal of Materials Science.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wei, Q. Strain rate effects in the ultrafine grain and nanocrystalline regimes—influence on some constitutive responses. J Mater Sci 42, 1709–1727 (2007). https://doi.org/10.1007/s10853-006-0700-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-006-0700-9