Skip to main content
Log in

Grain boundary sliding in nanomaterials at elevated temperatures

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The unique deformation behavior of nanocrystalline materials is considered to be caused by suppression of conventional lattice dislocation slip (which dominates in coarse-grained materials) and effective action of alternative deformation mechanisms occurring through motion of grain boundary defects. A significant role of grain boundary sliding in deformation processes in nanocrystalline materials was shown in models and was revealed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scr Metall Mater 23:1679

    CAS  Google Scholar 

  2. Christman T, Jain M (1990) Scr Metall Mater 24:1599

    Article  Google Scholar 

  3. Palumbo G, Erb U, Aust KT (1990) Scr Metall Mater 24:2347

    Article  CAS  Google Scholar 

  4. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) Scripta Mater 23:1679

    Article  CAS  Google Scholar 

  5. Champion Y, Langlois C, Guerin-Mailly S, Langlois P, Bonnentien JL, Hytch MJ (2003) Science 300:310

    Article  CAS  Google Scholar 

  6. Fitzsimmons MR, Eastman JA, Muller-Stach M, Wallner G (1991) Phys Rev B 44:2452

    Article  CAS  Google Scholar 

  7. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  8. Cheng S, Spencer JA, Milligan WW (2003) Acta Mater 51:4505

    Article  CAS  Google Scholar 

  9. Hayes R, Rodriguez R, Lavernia E (2001) Acta Mater 49:4055

    Article  CAS  Google Scholar 

  10. Tabachnikova ED, Bengus VZ, Stolyarov VV, Raab GI, Valiev RZ, Csach K, Miskuf J (2001) Mater Sci Eng 309–310:524

    Google Scholar 

  11. Cai B, Kong QP, Lu L, Lu K (2000) Mat Sci Eng A 286:188

    Article  Google Scholar 

  12. Hasnaoui A, Van Swygenhoven H, Derlet PM (2002) Phys Rev B66:184112

    Google Scholar 

  13. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  14. Milligan WW, Hackney SA, Ke M, Aifantis EC (1993) NanoStruct Mater 2:267

    Article  CAS  Google Scholar 

  15. Ke M, Hackney SA, Milligan WW, Aifantis EC (1995) NanoStruct Mater 5:689

    Article  CAS  Google Scholar 

  16. Markmann J, Bunzel P, Liu KW, Padmanabhan KA, Birringer R, Gleiter H, Weissmuller J (2003) Scripta Mater 49:637

    Article  CAS  Google Scholar 

  17. Champion Y, Langlois C, Guérin S, Lartigue-Korinek S, Langlois P, Hÿtch MJ (2005) MaterSci Forum 482:71

    Article  CAS  Google Scholar 

  18. Sergueeva AV, Mara NA, Mukherjee AK (2005) In: Hari Singh Nalwa (ed) Encyclopedia of nanoscience and nanotechnology, vol. 2. American Scientific Publishers, p 305

  19. Sergueeva AV, Mara NA, Valiev RZ, Mukherjee AK (2005) Mater Sci Eng A410–411:413

  20. Mishra RS, Valiev RZ, McFadden SX, Mukherjee AK (1998) Mater Sci Eng A252:174

    CAS  Google Scholar 

  21. McFadden SX, Mishra RS, Valiev RZ, Zhilyaev AP, Mukherjee AK (1999) Nature 398:684

    Article  CAS  Google Scholar 

  22. Bird JE, Mukherjee AK, Dorn JE (1969) In: Proceeding of Int. Conf., Haifa, Israel University Press, p 255

  23. McFadden SX, Valiev RZ, Mukherjee AK (2001) Mater Sci & Eng A319–321:849

  24. Gutkin Yu M, Ovid’ko IA, Skiba NV (2004) Acta Mater 52:1711

    Google Scholar 

  25. Zelin MG, Mukherjee AK (1995) Acta Metall Mater 43:2359

    Article  CAS  Google Scholar 

  26. Kaibyshev OA (2002) Mater Sci Eng A324:96

    Google Scholar 

  27. Chen M, Ma E, Hemker KJ, Sheng H, Wang Y, Cheng X (2003) Science 300:1275

    Article  CAS  Google Scholar 

  28. Karimpoor A, Erb U, Aust K, Palumbo G (2003) Scripta Mater 49:651

    Article  CAS  Google Scholar 

  29. He J, Lavernia EJ (2001) J Mater Res 16:2724

    CAS  Google Scholar 

  30. He J, Chung KH, Liao X, Zhu YT, Lavernia EJ (2002) Met Trans A 34:707

    Google Scholar 

  31. Wang Y, Chen M, Zhou F, Ma E (2002) Nature 419:912

    Article  CAS  Google Scholar 

  32. Kumar K, Suresh S, Chisholm M, Horton J, Wang P (2003) Acta Mater 51:387

    Article  CAS  Google Scholar 

  33. Liao X, Zhao Y, Srinivasan S, Zhu Y, Valiev R, Gunderov D (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  34. Roesner H, Markmann J, Weissmuller J (2004) Phil Mag Lett 84:321

    Article  CAS  Google Scholar 

  35. Asaro RJ, Krysl P, Kad B (2003) Phil Mag Lett 83:733

    Article  CAS  Google Scholar 

  36. Kumar K, Van Swygenhoven H, Suresh S (2003) Acta Mater 51:5743

    Article  CAS  Google Scholar 

  37. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H (2005) Acta Mater 53:1

    Article  CAS  Google Scholar 

  38. Schiotz J, Jacobsen KW (2003) Science 301:1357

    Article  CAS  Google Scholar 

  39. Schiotz J, Di Tolla D, Jacobsen K (1998) Nature 391:561

    Article  Google Scholar 

  40. Van Swygenhoven H, Derlet PM, Hasnaoui A (2002) Phys Rev B 66:024101

    Article  CAS  Google Scholar 

  41. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Nature Mater 1:45

    Article  CAS  Google Scholar 

  42. Marian J, Cai W, Bulatov VV (2004) Nature Mater 3:158

    Article  CAS  Google Scholar 

  43. Caturla MJ, Nieh TG, Stolken JS (2004) Appl Phys Lett 84:598

    Article  CAS  Google Scholar 

  44. Yamakov V, Wolf D, Phillpot SR, Gleiter H (2003) Acta Mater 51:4135

    Article  CAS  Google Scholar 

  45. Legros M, Elliott B, Rittner M, Weertman J, Hemker K (2000) Phil Mag A 80:1017

    Google Scholar 

  46. Van Swygenhoven H, Derlet PM, Hasnaoui A (2003) Adv Eng Mater 5:345

    Article  CAS  Google Scholar 

  47. Warner DH, Sansoz F, Molinari JF (2006) Int J Plasticity 22:754

    Article  CAS  Google Scholar 

  48. Gutkin M. Yu, Ovid’ko IA, Skiba NV (2005) J Phys D Appl Phys 38:3921

  49. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys Lett 83:632

    Article  CAS  Google Scholar 

  50. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT (2003) Appl Phys Lett 83:5062

    Article  CAS  Google Scholar 

  51. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT, Zhou F, Lavernia EJ, Xu HF (2004) Appl Phys Lett 84:3564

    Article  CAS  Google Scholar 

  52. Chan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654

    Article  CAS  Google Scholar 

  53. Sergueeva AV, Mara NA, Mukherjee AK (2005) In: B.S. Altan (ed) Severe plastic deformation: towards bulk production of nanostructured materials, Nova Science Publishers, p 84

  54. Sergueeva AV, Mara NA, Mukherjee AK (in press) Mater Sci Eng

  55. Todd RI (2000) Mater Sci Technol 16:1287

    Article  CAS  Google Scholar 

  56. Ovid’ko IA (2002) Science 295:2386

    Article  CAS  Google Scholar 

  57. Klimanek P, Klemm V, Romanov AE, Seefeldt M (2001) Adv Eng Mater 3:877

    Article  CAS  Google Scholar 

  58. Gutkin M Yu, Kolesnikova AL, Ovid’ko IA, Skiba NV (2002) J Metast Nanocryst Mater 1:47

  59. Murayama M, Howe JM, Hidaka H, Takaki S (2002) Science 295:2433

    Article  CAS  Google Scholar 

  60. Moldovan D, Wolf D, Phillpot SR (2001) Acta Mater 49:3521

    Article  CAS  Google Scholar 

  61. Sergueeva AV, Mara NA, Mukherjee AK (2004) Rev Adv Mater Sci 7:67

    CAS  Google Scholar 

  62. Spaepen F (1977) Acta Metall 25:407

    Article  CAS  Google Scholar 

  63. Van Swygenhoven H, Derlet PM (2001) Phys Rev B 64:224105

    Article  CAS  Google Scholar 

  64. Van Swygenhoven H, Spaczer M, Caro A, Farkas D (1999) Phys Rev B 60:22

    Article  Google Scholar 

  65. Kiritani M (2003) Mater Sci Eng A350:1

    CAS  Google Scholar 

  66. Jia D, Ramesh KT, Ma E (2003) Acta Mater 51:3495

    Article  CAS  Google Scholar 

  67. Dalla Torre F, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957

    Article  CAS  Google Scholar 

  68. Huang JY, Wu YK, Ye HQ (1996) Acta Mater 44:1211

    Article  CAS  Google Scholar 

  69. Bobylev SV, Gutkin M Yu, Ovid’ko IA (2004) Acta Mater 52:3793

  70. Van Swygenhoven H (2003) Mater Sci Forum 447–448:1

Download references

Acknowledgement

This investigation is supported by NSF, Division of Materials Research (grant NSF-DMR-0240144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sergueeva, A.V., Mara, N.A. & Mukherjee, A.K. Grain boundary sliding in nanomaterials at elevated temperatures. J Mater Sci 42, 1433–1438 (2007). https://doi.org/10.1007/s10853-006-0697-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0697-0

Keywords

Navigation