Skip to main content
Log in

Co-precipitation synthesis of Nd:YAG nano-powders: the effect of Nd dopant addition with thermal treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanopowders of Yttrium Aluminium Garnet doped with neodymium ions were obtained by the co-precipitation method from the reaction of aluminium, yttrium and neodymium nitrate with ammonia. The amount of neodymium was selected in order to produce samples of nominal stoichiometry NdXY(3–X)Al5O12 (where X = 0.006, 0.012, 0.024, 0.048, 0.081, 0.096, 0.17, 0.19, 0.38, 0.54, and 0.72, respectively). After washing and drying, the hydroxide precursors were subjected to Thermo-Gravimetry and Differential Thermal Analysis experiments from room temperature up to 1500 °C, which showed the presence of exothermal events accompanying phase transformation phenomena. X-ray diffraction investigations conducted with a high-resolution powder diffractometer on the specimens arrested at selected temperature of the thermograms, evidenced the amorphous-to-crystalline transformation phenomena leading to the garnet phase as the main product. On increasing the concentration of Nd, the presence of the monoclinic Y4Al2O9 phase was also detected together with a variable amount of a metastable hexagonal YAlO3 phase. Precise determination of the cubic garnet lattice parameters as a function of the neodymium content according to the Rietveld method shows a change from the value of 12.016 (±2) Å when X = 0 up to 12.128 (±2) Å for X = 0.720 with two distinctive regimes of increase. The line broadening analysis of X-ray profiles after correction for instrumental factors indicates that the average crystallite size is in the range 50–80 nm. Field-Emission Gun-Scanning Electron Microscopy observations showed the presence of aggregation features in the powders with a rounded morphology and a relatively uniform and narrow particle size distribution, with the average size figures in substantial agreement with the diffraction analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Katsurayama M, Anzai Y, Sugiyama A, Koike M, Kato Y (2001) J Cryst Growth 229:193

    Article  CAS  Google Scholar 

  2. Ikesue A (2002) Opt Mater 19:183

    Article  CAS  Google Scholar 

  3. Ravichandran D, Roy R, Chakhovskhoi AG, Hunt CE, White WB, Erdei S (1997) J. Lumin 71:291

    Article  CAS  Google Scholar 

  4. Leleckaite A, Kareiva A (2004) Opt Mater 26:123

    Article  CAS  Google Scholar 

  5. Sim S-M, Keller KA, Mah T-I (2000) J Mater Sci 35:713

    Article  CAS  Google Scholar 

  6. Guang Li J, Ikegami T, Lee J-H, Mori T. Yajima Y (2000) J Eur Ceram Soc 20:2395

    Article  Google Scholar 

  7. Chen T-M, Chen SC, Yu C-J (1999) J Sol State Chem 144:437

    Article  CAS  Google Scholar 

  8. Marchal J, Hinklin T, Baranwal R, Johns T, Laine RM (2004) Chem Mater 16:822

    Article  CAS  Google Scholar 

  9. Johnson BR, Kriven WM (2001) J Mater Res 16:1796

    Article  Google Scholar 

  10. Ghandi AS, Levi CG (2005) J Mater Res 20:1017

    Article  Google Scholar 

  11. Caponetti E, Saladino ML, Chillura Martino D, Pedone L, Enzo S, Russu S, Bettinelli M, Speghini A (2005) Solid St Phenom 106:7

    Article  CAS  Google Scholar 

  12. Wang H, Gao L, Niihara K (2000) Mat Sci Eng A288:1

    CAS  Google Scholar 

  13. Hsu WT, Hu W, Lu C (2003) Mat Sci Eng B104:40

    Article  CAS  Google Scholar 

  14. Young RA (ed) (1993) The Rietveld Method, University Press, Oxford

  15. Lutterotti L, Gialanella S (1998) Acta Mater 46:101

    Article  CAS  Google Scholar 

  16. Wagner CNJ (1966) In: Cohen JB, Hilliard JE (ed) Local Atomic Arrangements studied by X-ray Diffraction, Met Soc Conf, vol 36. Gordon & Breach, New York, p 219

  17. Palmero P, Esnouf C, Montanaro L, Fantozzi G (2005) J Eur Ceram Soc 25:1565

    Article  CAS  Google Scholar 

  18. Chung B-J et al (2003) J Ceram Process. 4:145–150

    Google Scholar 

  19. Li J-G, Ikegami T, Lee J-H, Mori T (2003) J Am Ceram Soc 83:961

    Article  Google Scholar 

  20. Li J-G, Ikegami T, Lee J-H, Mori T, Yajima Y. (2000) J Eur Ceram Soc 20:2395

    Article  CAS  Google Scholar 

  21. Hess NJ, Maupin GD, Chick LA, Sunberg DS, McCreedy DE, Armstrong TR (1994) J Mater Sci 29:1873

    Article  CAS  Google Scholar 

  22. Cannas C, Musinu A, Piccaluga G, Deidda C, Serra F, Bazzoni M, Enzo S (2005) J Sol State Chem 178:1526

    Article  CAS  Google Scholar 

  23. Popa NC (1998) J Appl Crystallogr 31:176

    Article  CAS  Google Scholar 

  24. Laine RM, Marchal J, Sun H, Pan XQ (2005) Adv Mater 17:830

    Article  CAS  Google Scholar 

  25. Inorganic Crystal Structure Database http://icsdweb.FIZ-Karlsruhe.de

  26. Carda J, Monros G, Escribano P, Alarcon J (1989) J Am Ceram Soc 72:160

    Article  CAS  Google Scholar 

  27. Bertaut EF (1950) Acta Cryst 3:14

    Article  CAS  Google Scholar 

  28. Shannon RD, Prewitt CT (1969) Acta Cryst B25:925

    Article  Google Scholar 

  29. Lupei A, Stoicescu C, Lupei V (1977) J Cryst Growth 177:207

    Article  Google Scholar 

  30. Bazzoni M, Bettinelli M, Daldosso M, Enzo S, Serra F, Speghini A (2005) J Sol State Chem 178:2301

    Article  CAS  Google Scholar 

  31. Carda J, Monros G, Esteve V, Amigo JM (1994) J Sol State Chem 108:24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is carried out within two collaborative Projects, entitled “Nanostructured Luminescent Oxides”, and “Synthesis of nanopowders assisted by microwaves” respectively, funded by the Italian Ministry for Education, University and Science (PRIN call 2003).

We acknowledge useful discussions with prof. G. Cocco, L. Schiffini (Univ. of Sassari, Italy) and prof. M. Baricco (Univ. of Torino, Italy) on the phase metastability.

We thank Dr. G. M. Ingo and Tilde De Caro (ISMN-CNR Montelibretti, Roma, Italy) for FEG-SEM micrographs, Dr. P. Guerra (Dipartimento di Ingegneria Chimica dei Processi e dei Materiali—Univ. of Palermo, Italy) for EDX analysis and Dr. Luca Lutterotti for making available a copy of the programme MAUD running in a personal computer. (http://www.ing.unitn.it/∼luttero/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Enzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caponetti, E., Saladino, M.L., Serra, F. et al. Co-precipitation synthesis of Nd:YAG nano-powders: the effect of Nd dopant addition with thermal treatment. J Mater Sci 42, 4418–4427 (2007). https://doi.org/10.1007/s10853-006-0660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0660-0

Keywords

Navigation