Skip to main content
Log in

Novel sodium alginate composite membranes prepared by incorporating cobalt(III) complex particles used in pervaporation separation of water–acetic acid mixtures at different temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present paper is our continuing effort to develop a new type of sodium alginate (NaAlg) composite membrane by incorporating cobalt(III)(3-acetylpyridine-o-aminobenzoylhydrazone) (Co-APABZ) complex as filler particles in different ratios. Membranes were prepared by solution casting followed by solvent evaporation and crosslinked with glutaraldehyde. Pervaporation (PV) performance of the prepared composite membranes was assessed in terms of flux and selectivity and these data were compared with the pristine NaAlg membrane in PV dehydration of water–acetic acid mixtures. Pristine Co-APABZ particles in crystalline form were prepared and characterized by the solid state X-ray diffraction (XRD) technique, while the NaAlg/Co(III)composite membranes were characterized by thermogravimetry (TGA) and dynamic mechanical thermal analyzer (DMTA). X-ray crystal structure of Co-APABZ has shown that the complex formed was crystalline in nature with six lattice water molecules, which are interconnected by hydrogen bonds linking together to form cyclic hexamers that are analogous to cyclohexane, creating water channels for an easy transport of water molecules. TGA indicated no changes in thermal stability of the membranes due to the presence of Co-APABZ in the NaAlg matrix. DMTA confirmed NaAlg crosslinking with glutaraldehyde. Effects of Co-APABZ content, membrane thickness, temperature and feed water compositions on membrane performance were investigated to find an optimum PV performance of the membranes developed. NaAlg composite membranes in the presence of Co-APABZ particles preferentially absorbed water molecules to facilitate diffusion of water through the membranes and thus enhance the selectivity to water. However, the amount of Co-APABZ present in the NaAlg matrix and the degree of membrane swelling has an effect on membrane performance. Selectivity of 174 for water with a flux of 0.123 kg/mh was obtained for 5 wt.% Co-APABZ containing NaAlg matrix, when tested for the feed mixture containing 10 wt % water. The present results are superior to the previously published data based on NaAlg membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gmehling J, Onken U, Arlt W (1981) Vapor–liquid equilibrium data collection, Dechema, Frankfurt/Main

  2. Shanley A (September 1994) Chem Eng 101(9):34

  3. Aminabhavi TM, Toti US, (2003) Design Monomers Polym 6:211

    Article  CAS  Google Scholar 

  4. Kurkuri MD, Toti US, Aminabhavi TM (2002) J Appl Polym Sci 86:3642

    Article  CAS  Google Scholar 

  5. Aminabhavi TM, Naidu BVK, Sridhar S (2004) J Appl Polym Sci 94:1827

    Article  CAS  Google Scholar 

  6. Naidu BVK, Krishna Rao KSV, Aminabhavi TM (2005) J Membr Sci 260:131

    Article  CAS  Google Scholar 

  7. Kurkuri MD, Kumbar SG, Aminabhavi TM (2002) J Appl Polym Sci 86:272

    Article  CAS  Google Scholar 

  8. Uragami T, Saito M (1989) Sep Sci Technol 24:541

    Article  CAS  Google Scholar 

  9. Mochizuki A, Amiya S, Sato Y, Ogawara H, Yamashita S (1990) J Appl Polym Sci 40:385

    Article  CAS  Google Scholar 

  10. Yeom CK, Lee KH (1998) J Appl Polym Sci 67:209

    Article  CAS  Google Scholar 

  11. Huang RYM, Pal R, Moon GY (1999) J Membr Sci 156:101

    Article  Google Scholar 

  12. Toti US, Kariduraganavar MY, Soppimath KS, Aminabhavi TM (2002) J Appl Polym Sci 83:259

    Article  CAS  Google Scholar 

  13. Toti US, Aminabhavi TM (2002) J Appl Polym Sci 85:2014

    Article  CAS  Google Scholar 

  14. Moon GY, Pal R, Huang RYM (1999) J Membr Sci 156:17

    Article  Google Scholar 

  15. Huang RYM, Pal R, Moon GY (2000) J Membr Sci 166:275

    Article  Google Scholar 

  16. Wang XN (2000) J Membr Sci 170:71

    Article  CAS  Google Scholar 

  17. Toti US, Aminabhavi TM (2004) J Membr Sci 228:199–208

    Article  CAS  Google Scholar 

  18. Kurkuri MD, Toti US, Aminabhavi TM (2002) J Appl Polym Sci 86:3642

    Article  CAS  Google Scholar 

  19. Yang G, Zhang L, Peng T, Zhong W (2000) J Membr Sci 175:53

    Article  CAS  Google Scholar 

  20. Lu SY, Chiu CP, Huang HY (2000) J Membr Sci 176:159

    Article  CAS  Google Scholar 

  21. Lee JF, Wang Y (1998) War Sci Tech 38:463

    Article  CAS  Google Scholar 

  22. Naidu BVK, Bhat SD, Sairam M, Wali AC, Sawant DP, Halligudi SB, Mallikarjuna NN, Aminabhavi TM (2005) J Appl Polym Sci 96:968

    Article  Google Scholar 

  23. Bhat SD, Naidu BVK, Shanbhag GV, Halligudi SB, Sairam M, Aminabhavi TM (2006) Sep Pur Tech 49:56

    Article  CAS  Google Scholar 

  24. Rat M, Desousa RA, Thomas A, Frapart Y, Tuchagues J, Artaud I (2003) Eur J Inorg Chem 64:759

    Article  Google Scholar 

  25. Keene TD, Hursthouse MB, Price DH (2004) Acta Cryst, Sect E60:m381

  26. Custelcean R, Afloroaei C, Vlassa M, Polverejan M (2000) Angew Chem 17:39

  27. Coleman AW, De Silva E, Nouar F, Nierlich M, Navaza A (2003) Chem Comm:826

  28. Ludwig R (2001) Angew Chem Int Ed. 4:1808

  29. Crank J (1975) The mathematics of diffusion, Clarenden Press, Oxford

    Google Scholar 

  30. Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2005) J Membr Sci 262:91

    Article  CAS  Google Scholar 

  31. Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2006) J Membr Sci 280:138

    Article  Google Scholar 

  32. Fujita H, Kishimoto A, Matsumoto KM (1960) Trans Faraday Soc 56:424

    Article  CAS  Google Scholar 

  33. Ping ZH, Nguyen QT, Clement R, Neel J (1990) J Membr Sci 48:297

    Article  CAS  Google Scholar 

  34. Adoor SG, Manjeshwar LS, Naidu BVK, Sairam M, Aminabhavi TM (2006) J Membr Sci 280:594

    Article  CAS  Google Scholar 

  35. Naidu BVK, Shetty LC, Aminabhavi TM (2004) J Appl Polym Sci 92:2740

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors (T.M Aminabhavi, K.B. Gudasi and R.S. Veerapur) thank University Grants Commission (UGC), New Delhi, India (F1-41/2001/CPP-II) for a major financial support to establish Center of Excellence in Polymer Science (CEPS). This work represents a collaborative effort between CEPS, Dharwad and IICT, Hyderabad under the MoU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejraj M. Aminabhavi.

Additional information

This article is CEPS communication #110.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veerapur, R.S., Gudasi, K.B., Sairam, M. et al. Novel sodium alginate composite membranes prepared by incorporating cobalt(III) complex particles used in pervaporation separation of water–acetic acid mixtures at different temperatures. J Mater Sci 42, 4406–4417 (2007). https://doi.org/10.1007/s10853-006-0652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0652-0

Keywords

Navigation