Skip to main content

Advertisement

Log in

Mechanical response of nanocrystalline steel obtained by mechanical attrition

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of bulk specimens of nanocrystalline 0.55% C steel with a grain size of 30 nm and a relative density higher than 97% have been determined. Samples were obtained by cold compaction and warm sintering at 425 °C of nanocrystalline powders obtained by mechanical attrition in a planetary ball mill. In both processes an Ar protective atmosphere was used in order to avoid oxygen contamination. X-ray diffraction (XRD) and Transmission electron microscopy (TEM) analysis indicated that a volume-averaged grain size of 30 nm is maintained after the warm consolidation processes. TEM studies also showed equiaxed ferrite with no dislocations inside the grains. However, the grain size distribution was no homogeneous as large grains of 100 nm were observed. An average hardness of 8.5 GPa was obtained, in good agreement with other bulk specimens of nanocrystalline Fe or eutectoid carbon steel prepared by other authors. Compression tests of bulk specimens at a strain rate of 10−4 s−1 showed a compression strength near 2,500 MPa with an absolute lack of ductility. Nanoindentation measurements at room temperature provided a strain rate sensitivity parameter of 0.012, indicating that the deformation mechanism is somehow governed by diffusion mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gleiter H (1989) Prog Mat Sci 33:223

    Article  CAS  Google Scholar 

  2. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mat Res 17:5

    CAS  Google Scholar 

  3. Rawers J, Krabbe R (1998) J Mat Synth Process 6:133

    Article  CAS  Google Scholar 

  4. Mallow TR, Koch CC (1998a) Acta Mater 46:6459

    Article  Google Scholar 

  5. Jia D, Ramesh KT, Ma E (2003) Acta Mater 51:3495

    Article  CAS  Google Scholar 

  6. Kim HS, Estrin Y (2001) Appl Phys Lett 79:4115

    Article  CAS  Google Scholar 

  7. Cheng S, Ma E, Wang YM et al (2005) Acta Mater 53:1521

    Article  CAS  Google Scholar 

  8. Khan AS, Zhang H, Takacs L (2000) Int J Plast 16:1459

    Article  CAS  Google Scholar 

  9. Takaki S, Kawasaki K, Futamura Y, Tsuchiyama T (2006) Mater Sci Forum 503–504:317

    Google Scholar 

  10. Wang YM, Ma E (2004a) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  11. Wang YM, Ma E (2004b) Mat Sci Eng A 375:46

    Article  CAS  Google Scholar 

  12. Asaro RJ, Suresh S (2005) Acta Mater 53:3369

    Article  CAS  Google Scholar 

  13. Jang D, Atzmon M (2003) J Appl Phys 93:9285

    Google Scholar 

  14. Van Swygenhoven H, Caro A (1997) Appl Phys Lett 71:1652

    Article  Google Scholar 

  15. Kim HS, Estrin Y (2005) Acta Mater 53:765

    Article  CAS  Google Scholar 

  16. May J, Höppel HW, Göken M (2005) Scrip Mater 53:189

    Article  CAS  Google Scholar 

  17. Schweiger R, Moser B, Dao M et al (2003) Acta Mater 51:5159

    Article  CAS  Google Scholar 

  18. Wei Q, Cheng S, Ramesh KT, Ma E (2004a) Mat Sci Eng A 381:71

    Article  CAS  Google Scholar 

  19. Mallow TR, Koch CC, Miraglia PQ, Murty KL (1998) Mat Sci Eng A 252:36

    Article  Google Scholar 

  20. Wei Q, Kecskes L, Jiao T et al (2004b) Acta Mater 52:1859

    Article  CAS  Google Scholar 

  21. Mallow TR, Koch CC (1997) Acta Mater 45:2177

    Article  Google Scholar 

  22. Kimura Y et al (2000) In: Symposium on ultrafine grained materials at the 2000 TMS annual meeting, Edited by the minerals, metals and materials society, p 277

  23. Nieman GW, Weertman JR, Siegel RW (1991) J Mat Res 6:1012

    CAS  Google Scholar 

  24. Mueller J, Durst K, Amberger D, Göken M (2006) Mat Sci Forum 503–504:31

    Article  Google Scholar 

  25. FullProf, Rodríguez Carbajal J (2004) Laboratoire Léon Brillouin (CEA-CNRS). Centre d’etudes de Saclay, 91191, Gif sur Yvette, Cedes, France

  26. Williamson GK, Hall WK (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  27. Scardi P, Leoni M, Delhez R (2004) J Appl Cryst 37:381

    Article  CAS  Google Scholar 

  28. Ungar T, Tichy G (1999) Phys Stat Sol A 171:425

    Article  CAS  Google Scholar 

  29. Revesz A, Ungar T, Borbely A, Lendvai J (1996) Nanostruct Mater 7:779

    Article  CAS  Google Scholar 

  30. He L, Ma E (1996) J Mat Res 11:72

    CAS  Google Scholar 

  31. Zhang HW, Gopalan R, Mukai T, Hono K (2005) Scrip Mater 53:863

    Article  CAS  Google Scholar 

  32. Murayama M, Howe JM, Hidaka H, Takaki S (2003) ISIJ Int 43:755

    CAS  Google Scholar 

  33. Ohsaki S, Hono K, Hidaka H, Takaki S (2005) Scrip Mater 52:271

    Article  CAS  Google Scholar 

  34. Lluma J, Benito JA, Roca A, Cabrera JM, Prado JM (2006) Mat Sci Forum 503–504:1007

    Google Scholar 

  35. Mallow TR, Koch CC (1998b) Metall Mater Trans A 29:2285

    Google Scholar 

  36. Kim J, Umemoto M, Liu ZG, Tsuchiya K (2001) ISIJ Int 41:1389

    Google Scholar 

  37. Xu Y, Umemoto M, Tsuchiya K (2002) Mater Trans 43:2205

    Article  CAS  Google Scholar 

  38. Khan A (2006) Int J Plast 22:195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. Antoni Roca and Jordi Llumà for help in the studies of the milled powder as well as Pep Bassas and Montserrat Marçal for assistance in XRD and SEM observations, respectively. The authors also thank the assistance provided by Dr. Jaume Caro in the nanoindentation tests. This work was supported by CICYT (project DPI 2005-09324). R. Rodríguez-Baracaldo is also grateful for the Fundación Carolina grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Benito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Baracaldo, R., Benito, J.A., Cabrera, J.M. et al. Mechanical response of nanocrystalline steel obtained by mechanical attrition. J Mater Sci 42, 1757–1764 (2007). https://doi.org/10.1007/s10853-006-0650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0650-2

Keywords

Navigation