Skip to main content

In situ synthesized ceramic–polymer composites for bone tissue engineering: bioactivity and degradation studies

Abstract

As an alternative to current bone grafting strategies, a poly-lactide-co-glycolide/calcium phosphate composite microsphere-based scaffold has been synthesized by the direct formation of calcium phosphate within forming microspheres. It was hypothesized that the synthesis of low crystalline calcium phosphate within forming microspheres would provide a site-specific delivery of calcium ions to enhance calcium phosphate reprecipitation onto the scaffold. Both polymeric and composite scaffolds were incubated in simulated body fluid (SBF) for 8 weeks, during which time polymer molecular weight, scaffold mass, calcium ion concentration of SBF, pH of SBF, and calcium phosphate reprecipitation was monitored. Results showed a 20% decrease in polymeric scaffold molecular weight compared to 11–14% decrease for composite scaffolds over 8 weeks. Composite scaffold mass and SBF pH decreased for the first 2 weeks but began increasing after 2 weeks and continued to do so up to 8 weeks, suggesting interplay between pH changes and calcium phosphate dissolution/reprecipitation. Free calcium ion concentration of SBF containing composite scaffolds increased 20–40% over control values within 4 h of incubation but then dropped as low as 40% below control values, suggesting an initial burst release of calcium ions followed by a reprecipitation onto the scaffold surface. Scanning electron micrographs confirm calcium phosphate reprecipitation on the scaffold surface after only 3 days of incubation. Results suggest the composite scaffold is capable of initiating calcium phosphate reprecipitation which may aid in bone/implant integration.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Laurencin CT, Ambrosio AA, Borden MD, Cooper JA (1999) In: Yarmush ML (ed) Annual review of biomedical engineering. Annual Reviews Inc., Palo Alto, p 19

    Google Scholar 

  2. 2.

    Niemeyer P, Krause U, Fellenberg J, Kasten P, Seckinger A, Ho AD, Simank HG (2004) Cells Tissues Organs 177:68

    CAS  Article  Google Scholar 

  3. 3.

    Yang C, Hillas PJ, Baez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek JW (2004) BioDrugs 18:103

    CAS  Article  Google Scholar 

  4. 4.

    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Biomaterials 26:3919

    CAS  Article  Google Scholar 

  5. 5.

    Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT (2005) Biomaterials 26:3197

    CAS  Article  Google Scholar 

  6. 6.

    Rai B, Teoh SH, Ho KH, Hutmacher DW, Cao T, Chen F, Yacob K (2004) Biomaterials 25:5499

    CAS  Article  Google Scholar 

  7. 7.

    Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW (2003) Tissue Eng 9:S113

    CAS  Article  Google Scholar 

  8. 8.

    Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ (2003) Biomed Mater Eng 13:115

    CAS  Google Scholar 

  9. 9.

    Vehof JW, Fisher JP, Dean D, van der Waerden JP, Spauwen PH, Mikos AG, Jansen JA (2002) J Biomed Mater Res 60:241

    CAS  Article  Google Scholar 

  10. 10.

    Lu HH, Kofron MD, El-Amin SF, Attawia MA, Laurencin CT (2003) Biochem Biophys Res Commun 305:882

    CAS  Article  Google Scholar 

  11. 11.

    Karp JM, Shoichet MS, Davies JE (2003) J Biomed Mater Res A 64:388

    Article  Google Scholar 

  12. 12.

    Bucholz RW (2002) Clin Orthop 395:44

    Article  Google Scholar 

  13. 13.

    Ducheyne P, Qiu Q (1999) Biomaterials 20:2287

    CAS  Article  Google Scholar 

  14. 14.

    Khan Y, Katti DS, Laurencin CT (2004) J Biomed Mater Res 69A:728

    CAS  Article  Google Scholar 

  15. 15.

    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721

    CAS  Article  Google Scholar 

  16. 16.

    Khan Y, Katti DS, Laurencin CT (2005) In: Laurencin CT, Botchwey EA (eds) Nanoscale materials science in biology and medicine. Mater. Res. Soc. Symp. Proc., Warrendale, PA, p 63

    Google Scholar 

  17. 17.

    Wiskott HW, Belser UC (1999) Clin Oral Implants Res 10:429

    CAS  Article  Google Scholar 

  18. 18.

    Salata LA, Franke-Stenport V, Rasmusson L (2002) Clin Implant Dent Relat Res 4:27

    Article  Google Scholar 

  19. 19.

    Dumbleton J, Manley MT (2004) J Bone Joint Surg Am 86A:2526

    Article  Google Scholar 

  20. 20.

    Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Biomaterials 26:4366

    CAS  Article  Google Scholar 

  21. 21.

    Schiller C, Epple M (2003) Biomaterials 24:2037

    CAS  Article  Google Scholar 

  22. 22.

    Lu X, Leng Y (2005) Biomaterials 26:1097

    CAS  Article  Google Scholar 

  23. 23.

    Prabhakar RL, Brocchini S, Knowles JC (2005) Biomaterials 26:2209

    CAS  Article  Google Scholar 

  24. 24.

    Krieger NS, Frick KK, Bushinsky DA (2004) Curr Opin Nephrol Hypertens 13:423

    CAS  Article  Google Scholar 

  25. 25.

    Godley R, Starosvetsky D, Gotman I (2004) J Mater Sci Mater Med 15:1073

    CAS  Article  Google Scholar 

  26. 26.

    Shu R, McMullen R, Baumann MJ, McCabe LR (2003) J Biomed Mater Res 67A:1196

    CAS  Article  Google Scholar 

  27. 27.

    Dvorak MM, Riccardi D (2004) Cell Calcium 35:249

    CAS  Article  Google Scholar 

  28. 28.

    Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D (2004) PNAS 101:5140

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by The National Science Foundation (BES-0201923). The authors would also like to thank Swaminathan Sethuraman, Ph.D. for his assistance with scanning electron microscopy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cato T. Laurencin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khan, Y.M., Cushnie, E.K., Kelleher, J.K. et al. In situ synthesized ceramic–polymer composites for bone tissue engineering: bioactivity and degradation studies. J Mater Sci 42, 4183–4190 (2007). https://doi.org/10.1007/s10853-006-0636-0

Download citation

Keywords

  • Calcium Phosphate
  • Simulated Body Fluid
  • Bone Tissue Engineering
  • Composite Scaffold
  • Composite Microsphere