Journal of Materials Science

, Volume 42, Issue 12, pp 4183–4190 | Cite as

In situ synthesized ceramic–polymer composites for bone tissue engineering: bioactivity and degradation studies

  • Yusuf M. Khan
  • Emily K. Cushnie
  • John K. Kelleher
  • Cato T. LaurencinEmail author


As an alternative to current bone grafting strategies, a poly-lactide-co-glycolide/calcium phosphate composite microsphere-based scaffold has been synthesized by the direct formation of calcium phosphate within forming microspheres. It was hypothesized that the synthesis of low crystalline calcium phosphate within forming microspheres would provide a site-specific delivery of calcium ions to enhance calcium phosphate reprecipitation onto the scaffold. Both polymeric and composite scaffolds were incubated in simulated body fluid (SBF) for 8 weeks, during which time polymer molecular weight, scaffold mass, calcium ion concentration of SBF, pH of SBF, and calcium phosphate reprecipitation was monitored. Results showed a 20% decrease in polymeric scaffold molecular weight compared to 11–14% decrease for composite scaffolds over 8 weeks. Composite scaffold mass and SBF pH decreased for the first 2 weeks but began increasing after 2 weeks and continued to do so up to 8 weeks, suggesting interplay between pH changes and calcium phosphate dissolution/reprecipitation. Free calcium ion concentration of SBF containing composite scaffolds increased 20–40% over control values within 4 h of incubation but then dropped as low as 40% below control values, suggesting an initial burst release of calcium ions followed by a reprecipitation onto the scaffold surface. Scanning electron micrographs confirm calcium phosphate reprecipitation on the scaffold surface after only 3 days of incubation. Results suggest the composite scaffold is capable of initiating calcium phosphate reprecipitation which may aid in bone/implant integration.


Calcium Phosphate Simulated Body Fluid Bone Tissue Engineering Composite Scaffold Composite Microsphere 



This work was funded by The National Science Foundation (BES-0201923). The authors would also like to thank Swaminathan Sethuraman, Ph.D. for his assistance with scanning electron microscopy.


  1. 1.
    Laurencin CT, Ambrosio AA, Borden MD, Cooper JA (1999) In: Yarmush ML (ed) Annual review of biomedical engineering. Annual Reviews Inc., Palo Alto, p 19Google Scholar
  2. 2.
    Niemeyer P, Krause U, Fellenberg J, Kasten P, Seckinger A, Ho AD, Simank HG (2004) Cells Tissues Organs 177:68CrossRefGoogle Scholar
  3. 3.
    Yang C, Hillas PJ, Baez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek JW (2004) BioDrugs 18:103CrossRefGoogle Scholar
  4. 4.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Biomaterials 26:3919CrossRefGoogle Scholar
  5. 5.
    Ho MH, Wang DM, Hsieh HJ, Liu HC, Hsien TY, Lai JY, Hou LT (2005) Biomaterials 26:3197CrossRefGoogle Scholar
  6. 6.
    Rai B, Teoh SH, Ho KH, Hutmacher DW, Cao T, Chen F, Yacob K (2004) Biomaterials 25:5499CrossRefGoogle Scholar
  7. 7.
    Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW (2003) Tissue Eng 9:S113CrossRefGoogle Scholar
  8. 8.
    Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ (2003) Biomed Mater Eng 13:115Google Scholar
  9. 9.
    Vehof JW, Fisher JP, Dean D, van der Waerden JP, Spauwen PH, Mikos AG, Jansen JA (2002) J Biomed Mater Res 60:241CrossRefGoogle Scholar
  10. 10.
    Lu HH, Kofron MD, El-Amin SF, Attawia MA, Laurencin CT (2003) Biochem Biophys Res Commun 305:882CrossRefGoogle Scholar
  11. 11.
    Karp JM, Shoichet MS, Davies JE (2003) J Biomed Mater Res A 64:388CrossRefGoogle Scholar
  12. 12.
    Bucholz RW (2002) Clin Orthop 395:44CrossRefGoogle Scholar
  13. 13.
    Ducheyne P, Qiu Q (1999) Biomaterials 20:2287CrossRefGoogle Scholar
  14. 14.
    Khan Y, Katti DS, Laurencin CT (2004) J Biomed Mater Res 69A:728CrossRefGoogle Scholar
  15. 15.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721CrossRefGoogle Scholar
  16. 16.
    Khan Y, Katti DS, Laurencin CT (2005) In: Laurencin CT, Botchwey EA (eds) Nanoscale materials science in biology and medicine. Mater. Res. Soc. Symp. Proc., Warrendale, PA, p 63Google Scholar
  17. 17.
    Wiskott HW, Belser UC (1999) Clin Oral Implants Res 10:429CrossRefGoogle Scholar
  18. 18.
    Salata LA, Franke-Stenport V, Rasmusson L (2002) Clin Implant Dent Relat Res 4:27CrossRefGoogle Scholar
  19. 19.
    Dumbleton J, Manley MT (2004) J Bone Joint Surg Am 86A:2526CrossRefGoogle Scholar
  20. 20.
    Kim HM, Himeno T, Kokubo T, Nakamura T (2005) Biomaterials 26:4366CrossRefGoogle Scholar
  21. 21.
    Schiller C, Epple M (2003) Biomaterials 24:2037CrossRefGoogle Scholar
  22. 22.
    Lu X, Leng Y (2005) Biomaterials 26:1097CrossRefGoogle Scholar
  23. 23.
    Prabhakar RL, Brocchini S, Knowles JC (2005) Biomaterials 26:2209CrossRefGoogle Scholar
  24. 24.
    Krieger NS, Frick KK, Bushinsky DA (2004) Curr Opin Nephrol Hypertens 13:423CrossRefGoogle Scholar
  25. 25.
    Godley R, Starosvetsky D, Gotman I (2004) J Mater Sci Mater Med 15:1073CrossRefGoogle Scholar
  26. 26.
    Shu R, McMullen R, Baumann MJ, McCabe LR (2003) J Biomed Mater Res 67A:1196CrossRefGoogle Scholar
  27. 27.
    Dvorak MM, Riccardi D (2004) Cell Calcium 35:249CrossRefGoogle Scholar
  28. 28.
    Dvorak MM, Siddiqua A, Ward DT, Carter DH, Dallas SL, Nemeth EF, Riccardi D (2004) PNAS 101:5140CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yusuf M. Khan
    • 1
    • 2
  • Emily K. Cushnie
    • 3
  • John K. Kelleher
    • 1
  • Cato T. Laurencin
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Orthopaedic Surgery, School of MedicineThe University of VirginiaCharlottesvilleUSA
  2. 2.Department of Biomedical EngineeringThe University of VirginiaCharlottesvilleUSA
  3. 3.Department of Chemical EngineeringThe University of VirginiaCharlottesvilleUSA

Personalised recommendations