Journal of Materials Science

, Volume 42, Issue 12, pp 4364–4371 | Cite as

The effect of microstructure and applied stress on magnetic Barkhausen emission in induction hardened steel

  • Mohamed Blaow
  • John Terence EvansEmail author
  • Brian A. Shaw


The influence of elastic deformation on the emission of magnetic Barkhausen noise (MBN) was investigated for induction-hardened low alloy steel with two different treatments: a standard temper (ST) and an over temper (OT) heat treatment. The rectified MBN profiles were found to be reversible with respect to loading and unloading, i.e., a profile that was changed by application of stress was recovered when the stress was removed. Characteristics of the profiles (peak height Vp, peak position Ip and half-width Wp) were recorded as a function of applied stressσ. Plots of Vp versus σ were S-shaped, with Vp reaching a maximum on the tensile side of the graph and a minimum on the compression side. In a more restricted stress range, between −500 and 1,000 MPa, Vp was an approximately a linear function of σ. The OT specimens showed greater sensitivity to stress than the ST specimens. Another difference was that the OT specimens produced an MBN profile with two overlapping peaks when under compression. The other profile characteristics showed a relationship with stress that ran counter to that of Vp, i.e., where Vp increased with increasing stress, Ip and Wp decreased. The observations are discussed in the light of established models of Barkhausen noise.


Domain Wall Applied Stress Standard Temper Stress Sensitivity Search Coil 


  1. 1.
    Shaw BA, Evans JT, Wojtas AS, Suominen L (1997) Grinding process control using the magnetic Barkhausen noise method. In: Third International Workshop on Electromagnetic Non-Destructive Evaluation. IOS Press in the Series in Applied Electromagnetics and Mechanics; pp 82–91Google Scholar
  2. 2.
    Alessandro B, Beatrice C, Bernotti G, Montorsi AJ (1990) J Appl Phys 68:2901CrossRefGoogle Scholar
  3. 3.
    Jiles DC (2000) Czech J Phys 50:893CrossRefGoogle Scholar
  4. 4.
    Lo CCH, Lee SJ, Li L, Kerdus LC, Jiles DC (2002) IEEE Trans Magn 38:2418CrossRefGoogle Scholar
  5. 5.
    Rautioaho R, Karjalainen P, Moilanen M (1987) J Magn Magn Mater 68:314CrossRefGoogle Scholar
  6. 6.
    Rautioaho R, Kivimaa J, Moilanen M (1994) J Magn Magn Mater 129:217CrossRefGoogle Scholar
  7. 7.
    Kivimaa J, Moilanen M, Rautioaho R, Zhang H (1993) IEEE Trans Magn 29:2992CrossRefGoogle Scholar
  8. 8.
    Sengupta A, Theiner W (1995) Mater Eval 53:554Google Scholar
  9. 9.
    Lindgren M, Lepisto T (2000) NDT & E Int 34:337CrossRefGoogle Scholar
  10. 10.
    Iordache VE, Hug E, Buiron N (2003) Mat Sci Eng A 359:254CrossRefGoogle Scholar
  11. 11.
    Jagadish C, Clapham L, Atherton D (1990) IEEE Trans Magn 26:1160CrossRefGoogle Scholar
  12. 12.
    Hyde TR, Evans JT, Shaw BA (2000) Mater Eval 58:985Google Scholar
  13. 13.
    Gatelier-Rothea C, Chicois J, Fougres R, Fleichman P (1998) Acta Mater 46:4873CrossRefGoogle Scholar
  14. 14.
    Stefanita CG, Atherton DL, Clapham L (2000) Acta Mater 48:3545CrossRefGoogle Scholar
  15. 15.
    Anglada-Rivera J, Padovese LR, Capó-Sántchez J (2001) J Magn Magn Mater 231:299CrossRefGoogle Scholar
  16. 16.
    Pérez-Benitez JA, Padovese LR, Capó-Sántchez J, Anglada-Rivera J (2003) J Magn Magn Mater 263:72CrossRefGoogle Scholar
  17. 17.
    Kleber X, Vincent A (2004) NDT & E Int 37:439CrossRefGoogle Scholar
  18. 18.
    Stewart D, Stevens K, Kaiser A (2004) Curr Appl Phys 4:308CrossRefGoogle Scholar
  19. 19.
    Parakka A, Jiles DC, Gupta H, Jaliccs S (1996) J Appl Phys 79:6045CrossRefGoogle Scholar
  20. 20.
    Parakka AP, Jiles DC, Gupta H, Zang M (1997) J Appl Phys 81:5085CrossRefGoogle Scholar
  21. 21.
    Sipahi L, Devine M, Jiles DC, Palmer D (1993) Rev Prog Qua Non Dest Eval 12:1847CrossRefGoogle Scholar
  22. 22.
    Blaow M, Evans JT, Shaw BA (2005) Acta Mater 53:279CrossRefGoogle Scholar
  23. 23.
    Blaow M, Magnetic Barkhausen Noise in Steel, Ph.D. Thesis University of Newcastle upon Tyne, 2005Google Scholar
  24. 24.
    Blaow M, Evans JT, Shaw BA (2004) Mater Sci Eng A 386:74CrossRefGoogle Scholar
  25. 25.
    Timoshenko S, Young DH (1968) Elements of strength of materials. Van Nostrand, Princeton NJGoogle Scholar
  26. 26.
    Birkbeck G, Petch NJ, Rae DM (1972) J Iron Steel Inst 210:675Google Scholar
  27. 27.
    Jiles DC, Suominen L (1994) IEEE Trans Magn 30:4924CrossRefGoogle Scholar
  28. 28.
    Jiles DC, Sipahi LB, Williams G (1993) J Appl Phys 73:5830CrossRefGoogle Scholar
  29. 29.
    Sablik MJ (1993) J Appl Phys 74:5898CrossRefGoogle Scholar
  30. 30.
    Jiles DC (1988) J Phys D: Appl Phys 21:1186CrossRefGoogle Scholar
  31. 31.
    Sablik MJ, Augustyniak B (1996) J Appl Phys 79:963CrossRefGoogle Scholar
  32. 32.
    Sablik MJ, Jiles DC (1993) IEEE Trans Magn 29:2113CrossRefGoogle Scholar
  33. 33.
    Blaow M, Evans JT, Shaw BA (2005) J Mater Sci 40:5517CrossRefGoogle Scholar
  34. 34.
    Blaow M, Evans JT, Shaw BA (2006) J Magn Magn Mater 303:153CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Mohamed Blaow
    • 1
  • John Terence Evans
    • 1
    Email author
  • Brian A. Shaw
    • 1
  1. 1.School of Mechanical and Systems EngineeringUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations