Skip to main content

Advertisement

Log in

Evolution of microstructure and microtexture in fcc metals during high-pressure torsion

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pure nickel and commercially pure (CP) aluminium were selected as model fcc materials for a detailed investigation of the experimental parameters influencing grain refinement and evolution of microstructure and microtexture during processing by high-pressure torsion (HPT). Samples were examined after HPT using microhardness measurements, transmission electron microscopy and orientation imaging microscopy. Processing by HPT produces a grain size of ∼170 nm in pure Ni and ∼1 μm in CP aluminium. It is shown that homogeneous and equiaxed microstructures can be attained throughout the samples of nickel when using applied pressures of at least ∼6 GPa after 5 whole revolution. In CP aluminium, a homogeneous and equiaxed microstructure was achieved after 2 whole revolutions under an applied pressure of 1 GPa. For these conditions, the distributions of grain boundary misorientations are similar in the centre and at the periphery of the samples. It is shown that simple shear texture develops in fcc metals subjected to high-pressure torsion. Some grain growth was detected at the periphery of the Al disk after 8 revolutions. The factors influencing the development of homogeneous microstructures in processing by HPT are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russ Metall 1:99

    Google Scholar 

  2. Smirnova NA, Levit VI, Pilyugin VI, Kuznetsov RI, Davydova LS, Sazonova VA (1986) Fiz Metal Metalloved 61:170

    Google Scholar 

  3. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:1880

    CAS  Google Scholar 

  4. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Metall Mater Trans 29A:2503

    CAS  Google Scholar 

  5. Stolyarov V, Valiev RZ (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. The Minerals, Metals and Materials Society, Warrendale, PA, p 209

  6. Zhilyaev AP, Kim B-K, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scripta Mater 48:575

    Article  Google Scholar 

  7. Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ (1999) Nanostruct Mater 11:947

    Article  CAS  Google Scholar 

  8. Mishra RS, Valiev RZ, McFadden SX, Islamgaliev RK, Mukherjee AK (2001) Phil Mag A 81:37

    Article  CAS  Google Scholar 

  9. Islamgaliev RK, Yunusova NF, Sabirov IN, Sergueeva AV, Valiev RZ (2001) Mater Sci Eng A319–322:877

    Google Scholar 

  10. Dobatkin SV (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. The Minerals, Metals and Materials Society, Warrendale, PA, p 183

  11. Islamgaliev RK, Buchgraber W, Kolobov YR, Amirkhanov NM, Sergueeva AV, Ivanov KV, Grabovetskaya GP (2001) Mater Sci Eng A319–321:872

    Google Scholar 

  12. Oh-ishi K, Horita Z, Smith DJ, Valiev RZ, Nemoto M, Langdon TG (1999) J Mater Res 14:4200

    CAS  Google Scholar 

  13. Dudova N, Kaibyshev R, Valitov V (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. The Minerals, Metals and Materials Society, Warrendale, PA, p 75

  14. Korznikov AV, Dimitrov O, Korznikova GF, Dallas JP, Idrisova SR, Valiev RZ, Faudet F (1999) Acta Mater 47:3301

    Article  CAS  Google Scholar 

  15. Korznikov AV, Tram G, Dimitrov O, Korznikova GF, Idrisova SR, Pakiela Z (2001) Acta Mater 49:663

    Article  CAS  Google Scholar 

  16. Valiev RZ, Song C, McFadden SX, Mukherjee AK, Mishra RS (2001) Phil Mag A 81:25

    Article  CAS  Google Scholar 

  17. Mishra RS, Stolyarov VV, Echer C, Valiev RZ, Mukherjee AK (2001) Mater Sci Eng A298:44

    CAS  Google Scholar 

  18. Korznikov AV, Ivanisenko YuV, Laptionok DV, Safarov IM, Pilyugin VP, Valiev RZ (1994) Nanostruct Mater 4:159

    Article  CAS  Google Scholar 

  19. Dobatkin SV, Valiev RZ, Kaputkina LM, Krasilnikov NA, Sukhostavskaya OV, Komlev VS (1999) In: Sakai T, Suzuki HG (eds) The Fourth International Conference on Recrystallization and Related Phenomena. The Japan Institute of Metals, Sendai, Japan, p 907

  20. Dobatkin SV, Valiev RZ, Odessky PD, Krasilnikov NA, Raab GI, Konenkova VN (2001) In: Takaki S, Maki T (eds) Ultrafine-grained steels. The Iron and Steel Institute of Japan, Tokyo, Japan, p 122

  21. Kaibyshev R, Kazakulov I, Sakai T, Belyakov A (2001) In: Takaki S, Maki T (eds) Ultrafine-grained steels. The Iron and Steel Institute of Japan, Tokyo, Japan, p 152

  22. Ivanisenko YuV, Valiev RZ, Lojkowski W, Grob A, Fecht H-J (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. The Minerals, Metals and Materials Society, Warrendale, PA, p 47

  23. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  24. Vorhauer A, Pippan R (2004) Scripta Mater 51:921

    Article  CAS  Google Scholar 

  25. Sakai G, Horita Z, Langdon TG (2005) Mater Sci Eng A393:344

    CAS  Google Scholar 

  26. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2006) In: Zhu YT, Langdon TG, Horita Z, Zehetbauer MJ, Semiatin SL, Lowe TC (eds) Ultrafine grained materials IV. The Minerals, Metals & Materials Society, Warrendale, PA, p 245

  27. Zhilyaev AP, Oh-ishi K, Langdon TG, McNelley TR (2006) In: Zhu YT, Langdon TG, Horita Z, Zehetbauer MJ, Semiatin SL, Lowe TC (eds) Ultrafine grained materials IV. TMS, Warrendale, PA, p 245

  28. Prokoshkin SD, Khmelevskaya IYu, Dobatkin SV, Trubitsyna IB, Tatyanin EV, Stolyarov VV, Prokofiev EA (2005) Acta Mater 53:2703

    Article  CAS  Google Scholar 

  29. Zhilyaev AP, Kim B-K, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A391:377

    CAS  Google Scholar 

  30. Polakowski NH, Ripling EJ (1966) “Strength and structure of engineering materials”, Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  31. Degtyarev MV, Chashchukhina TI, Voronova LM, Davydova LS, Pilyugin VP (2000) Phys Metals Metallog 90:604

    Google Scholar 

  32. Efros BM, Pilyugin VP, Patselov AM, Beygelzimer YY, Efros NB (2002) In: Zhu YT, Langdon TG, Mishra RS, Semiatin SL, Saran MJ, Lowe TC (eds) Ultrafine grained materials II. The Minerals, Metals and Materials Society, Warrendale, PA, p 193

  33. Dingley DJ, Field DP (1996) Mater Sci Technol 12:1

    Google Scholar 

  34. Stout MG, Kallend JS, Kocks UF, Przystupa MA, Rollett AD (1988) In: Kallend JS, Gottstein G (eds) Eighth International Conference on Texture of Materials. The Metallurgical Society, Warrendale, PA, p 479

  35. Brandon DG (1966) Acta Metall 14:1479

    Article  CAS  Google Scholar 

  36. Rybal’chenko OV, Dobatkin SV, Kaputkina LM, Raab GI, Krasilnikov NA (2004) Mater Sci Eng A387–389:244

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by INTAS-03513779 and RFBR-05-03-32233-a. One of the authors (APZ) thanks the National Research Council of the National Academy of Science (USA) and the Spanish Ministry of Education and Science (under Ramón y Cajal program) for financial support. The other authors were partially supported by the U.S. Air Force Office of Scientific Research under funding document no. F1ATA06058G001 (TRM) and the National Science Foundation of the United States under Grant No. DMR-0243331 (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhilyaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhilyaev, A.P., McNelley, T.R. & Langdon, T.G. Evolution of microstructure and microtexture in fcc metals during high-pressure torsion. J Mater Sci 42, 1517–1528 (2007). https://doi.org/10.1007/s10853-006-0628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0628-0

Keywords

Navigation