Journal of Materials Science

, Volume 42, Issue 13, pp 4763–4771 | Cite as

Microstructure evolution of laser surface remelted Zn-2.7 wt.%Cu hyperperitectic alloy

  • Yunpeng SuEmail author
  • Xin Lin
  • Sen Yang
  • Meng Wang
  • Weidong Huang


Laser surface remelting experiments on Zn-2.7 wt.%Cu hyperperitectic alloy were performed by using a 5kW CW CO2 laser at beam scanning velocities ranging between 6 and 1,207 mm/s. With the increase of the growth rate, the microstructures of Zn-2.7 wt.% Cu alloy changed from planar interface to lamellar structures, cellular structures, and finally to high velocity absolute stability (HVAS) planar interface at a growth rate of 349 mm/s. The critical growth rate for the transformation from lamellar structure to cells was about 96 mm/s. Quantitative measurement was preformed to reveal the relationship between the average lamellar spacing and the corresponding growth rate, and the results are in excellent agreement with the prediction of the TMK eutectic model.


Lamellar Structure Critical Velocity Molten Pool Planar Interface Lamellar Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is financially supported by the National Natural Science Foundation of China Grant No. 50201012, 50471065. The authors would like to thank Miss Qian Chen and Miss Xiaoqin Yu of Lan Zhou University of Technology for her enthusiastic help.


  1. 1.
    Chalmers B (1959) In: Physical metallurgy. Wiley, New York, p 1Google Scholar
  2. 2.
    Boettinger WJ (1974) Metall Trans A 5:2023CrossRefGoogle Scholar
  3. 3.
    Flemings MC (1974) In: Solidification processing. McGraw-Hill, New York, p 6Google Scholar
  4. 4.
    Lee JH, Verhoeven JD (1994) J Cryst Growth 144:353CrossRefGoogle Scholar
  5. 5.
    Busse P, Meissen F (1997) Scripta Mater 36:653CrossRefGoogle Scholar
  6. 6.
    Vandyoussefi M, Kerr HW, Kurz W (2000) Acta Mater 48:2297CrossRefGoogle Scholar
  7. 7.
    Yang S, Huang WD, Liu WJ, Su YP, Zhou YH (2002) Chinese J Lasers 29A:475Google Scholar
  8. 8.
    Gremaud M, Carrard M, Kurz W (1991) Acta Metall Mater 39:1431CrossRefGoogle Scholar
  9. 9.
    Liu ZX, Huang WD, Yang S (2002) Chinese J Nonferr Metal 12:458Google Scholar
  10. 10.
    Massalski TB (1986) In: Binary alloy phase diagram. American Society for Metals, Metals Park, OH, p 235Google Scholar
  11. 11.
    Pan QY, Huang WD, Lin X, Zhou YH (1997) J Crystal Growth 181:109CrossRefGoogle Scholar
  12. 12.
    Su YP, Lin X, Wang M, Xue L, Huang WD (2004) Scripta Materialia 51:397CrossRefGoogle Scholar
  13. 13.
    Su YP, Wang M, Lin X, Huang WD (2004) Mater Lett 58:2670CrossRefGoogle Scholar
  14. 14.
    Hoadley AFA, Rappaz M, Zimmermann M (1991) Metall Trans B 22:101Google Scholar
  15. 15.
    Kubin LP, Estrin Y (1985) Acta Metall 33:397CrossRefGoogle Scholar
  16. 16.
    Trivedi R, Kurz W (1986) Int Mater Rev 39:823Google Scholar
  17. 17.
    Boettinger WJ, Coriell SR (1988) In: Sahm PR, Jones H, Adams CM (eds) NATO ASI Series E-No. 114. Martinus Nijboff, Dondrecht, p 81Google Scholar
  18. 18.
    Aziz MJ, Boettinger WJ (1994) Acta Metall Mater 42:27Google Scholar
  19. 19.
    Lin X, Li YM, Liu ZX, Li T, Huang WD (2001) Sci Techn Adv Mater 2:293CrossRefGoogle Scholar
  20. 20.
    Lin X, Huang WD, Wang M, Li YM, Li T, Su YP, Shen SJ (2002) Sci China (Series E) 45:146CrossRefGoogle Scholar
  21. 21.
    Hunt JD, Lu SZ (1996) Metall Mater Trans A 27:611CrossRefGoogle Scholar
  22. 22.
    Perepezko JH, Boettinger WJ (1983) In: Bennett LH, Massalski TB, Giessen BC (eds) Mat. Res. Soc. Symp. Proc. 19. Elsevier North Holland, New York, p 108Google Scholar
  23. 23.
    Liu YC, Yang GC, Zhou YH (2002) Cryst Growth 240:603CrossRefGoogle Scholar
  24. 24.
    Trivedi R, Magnin P, Kurz W (1987) Acta Mater 35:971CrossRefGoogle Scholar
  25. 25.
    Massalski TB (1986) In: Binary alloy phase diagram. Metals Park, OH, p 75Google Scholar
  26. 26.
    Liu HY, Jones H (1992) Acta Metall 40:229CrossRefGoogle Scholar
  27. 27.
    Cahn RW, Haasen P (1996) In: Physical metallurgy, 4th edn. North-Holland, AmsterdamGoogle Scholar
  28. 28.
    Gale WF, Totemeier TC (2004) In: Smithells metals reference book, 6th edn. Elsevier Butterworth-Heinemann, Oxford, p 14.1Google Scholar
  29. 29.
    Ma D, Li Y, Ng SC, Jones H (2001) Sci Tech Adv Mater 2:127CrossRefGoogle Scholar
  30. 30.
    Wang M, Lin X, Su YP, Shen SJ, Huang WD (2002) Acta Metallurgica Sinica 38:37Google Scholar
  31. 31.
    Mullins WW, Sekerka RF (1963) J Appl Phys 34:323CrossRefGoogle Scholar
  32. 32.
    Mullins WW, Sekerka RF (1964) J Appl Phys 35:444CrossRefGoogle Scholar
  33. 33.
    Boettinger WJ, Shechtman D, Schaefer RJ et al (1984) Metall Trans A 15:55CrossRefGoogle Scholar
  34. 34.
    Gill SC, Kurz W (1993) Mater Sci Eng A 173:335CrossRefGoogle Scholar
  35. 35.
    Jones H (1991) Mater Sci Eng A 133:33CrossRefGoogle Scholar
  36. 36.
    Kurz W, Giovanola B, Trivedi R (1986) Acta Metall 34:823CrossRefGoogle Scholar
  37. 37.
    Yang S, Huang WD, Liu WJ, Zhou YH (2002) Prog Nat Sci 12:684Google Scholar
  38. 38.
    Wu JP, Hou AX, Huang DH, Bao ZY, Gao ZN, Qu SS (2001) Sci China E 44:484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Yunpeng Su
    • 1
    • 3
    Email author
  • Xin Lin
    • 1
  • Sen Yang
    • 2
  • Meng Wang
    • 1
  • Weidong Huang
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anP.R. China
  2. 2.Department of Materials Science and EngineeringInner Mongolia University of TechnologyHohhotP.R. China
  3. 3.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations