Skip to main content
Log in

Structural nanocrystalline materials: an overview

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents a brief overview of the field of structural nanocrystalline materials. These are materials in either bulk, coating, or thin film form whose function is for structural applications. The major processing methods for production of bulk nanocrystalline materials are reviewed. These methods include inert gas condensation, chemical reaction methods, electrodeposition, mechanical attrition, and severe plastic deformation. The stability of the nanocrystalline microstructure is discussed in terms of strategies for retardation of grain growth. Selected mechanical properties of nanocrystalline materials are described; specifically strength and ductility. Corrosion resistance is briefly addressed. Examples of present or potential applications for structural nanocrystalline materials are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jilek M, Cselle T, Holubar P, Morstein M, Veprek-Heijman MGJ, Veprek S (2004) Plasma Chem. Plasma Processing 24:493

  2. Munz W-D, Lewis DB, Hovsepian PEh, Schonjahn C, Ehiasarian A, Smith IJ (2001) Surf Eng 17:15

    Article  CAS  Google Scholar 

  3. Munz W-D (2003) MRS Bull 28:173

    CAS  Google Scholar 

  4. Voevodin AA, Schneider JM, Rebholz C, Matthews A (1996) Tribol Int 29:559

    Article  CAS  Google Scholar 

  5. Voevodin AA, Capano MA, Safriet AJ, Donley MS, Zabinski JS (1996) Appl Phys Lett 69:188

    Article  CAS  Google Scholar 

  6. Voevodin AA, Prasad SV, Zabinski JS (1997) J Appl Phys 82:855

    Article  CAS  Google Scholar 

  7. Voevodin AA, Walck SD, Zabinski JS (1997) Wear 203–204:516

  8. Voevodin AA, Zabinski JS (1998) Diamond Related Mat 7:463

    Article  CAS  Google Scholar 

  9. Voevodin AA Zabinski JS (2000) Thin Solid Films 370:223

    Article  Google Scholar 

  10. Voevodin AA, Fitz TA, Hu JJ, Zabinski JS (2002) J Vac Sci Technol A 20:1434

    Google Scholar 

  11. Mehl RF, Cahn RW (1983) In: Cahn RW, Haasen P (eds) Physical Metallurgy, 3rd edn. North Holland, Amsterdam, p 1

  12. Guinier A (1938) Nature 142:569

    CAS  Google Scholar 

  13. Preston GD (1938) Nature 142:570

    CAS  Google Scholar 

  14. Porter DA, Easterling KE (1983) In: Phase Transformations in Metals and Alloys, Van Nostrand Reinhold, Wokingham, UK, p 291

  15. Maziasz PJ, Pollard M (2003) Adv Mat Processes 161:57

    Google Scholar 

  16. Ehmann KF, Devor RE, Kapoor SG, and Ni J (2000) Micro/Meso-Mechanical Manufacturing M4, NSF Workshop, May 16–17

  17. Siegel RW (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Processing of metals and alloys. Materials science and technology – a comprehensive treatment, vol 15. VCH, Weinheim, Germany, p 583

  18. Chow G-M, Kurihara LK (2002) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publ., Norwich, NY, p 3

  19. Mccandlish LE, Kear BH, Kim BK (1992) NanoStructured Mater 1:119

    Article  CAS  Google Scholar 

  20. Erb U, Aust KT, Palumbo G (2002) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publ., Norwich, NY, p 179

  21. Koch CC (1993) NanoStructured Mater 2:109

    Article  CAS  Google Scholar 

  22. Koch CC (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Processing of metals and alloys, Materials science and technology: a comprehensive treatment, vol 15. VCH, Weinheim, Germany, p 193

  23. Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York

  24. Eckert J, Holzer JC, Krill CE, Johnson WL (1992) J Mater Res 7:1751

    CAS  Google Scholar 

  25. Groza JR (2002) In: Koch CC (ed) Nanostructured materials: processing, properties, and applications. William Andrew Publ., Norwich, NY, p 115

  26. Mayo MJ (1996) Int Mater Rev 41:85

    CAS  Google Scholar 

  27. Rack HJ, Cohen M (1970) Mater Sci Eng 6:320

    Article  CAS  Google Scholar 

  28. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  29. Segal VM, Reznikow VI, Drobyshevkij AE, Kopylov VI (1981) Metally 1:115

    Google Scholar 

  30. Valiev RZ, Alexandov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    CAS  Google Scholar 

  31. Sakai G, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579

    Article  Google Scholar 

  32. Benavides S, Li Y, Murr LE (2000) In: Mitra RS, Semiatin SL, Suryanarayana C, Thadhani NN, Lowe TC (eds) Ultrafine grained materials. TMS, Warrendale, PA, p 155

  33. Sakai G, Nankamura K, Horita Z, Langdon TG (2005) Mater Sci Eng A 406:268

    Google Scholar 

  34. Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85:929

    Article  CAS  Google Scholar 

  35. Suryanarayana C (1995) Intl Mater Rev 40:41

    Google Scholar 

  36. Weissmuller J (1996) In: Bourell DL (ed) Synthesis and processing of nanocrystalline powder. TMS, Warrendale, PA, p 3

  37. Malow TR, Koch CC (1996) In: Bourell DL (ed) Synthesis and processing of nanocrystalline powder. TMS, Warrendale, PA, p 33

  38. Hofler HJ Averback RS (1990) Scripta Metall Mater 24:2401

    Article  Google Scholar 

  39. Boylan K, Osstrander D, Erb U, Palumbo G, Aust KT (1991) Scripta Metall Mater 25:2711

    Article  CAS  Google Scholar 

  40. Michels A, Krill CE, Ehrhardt H, Birringer R, Wu DT (1999) Acta Mater 47:2143

    Article  CAS  Google Scholar 

  41. Gao Z Fultz B (1994) NanoStructured Mater 4:939

    Article  Google Scholar 

  42. Krill CE, Helfen L, Michels D, Natter H, Fitch A, Masson O, Birringer R (2001) Phys Rev Lett 86:842

    Article  CAS  Google Scholar 

  43. Weissmuller J (1993) NanoStructured Mater 3:261

    Article  Google Scholar 

  44. Weissmuller J (1994) J Mater Res 9:4

    Google Scholar 

  45. Kirchheim R (2002) Acta Mater., 50:413

    Article  CAS  Google Scholar 

  46. Liu F Kirchheim R (2004) Scripta Mater 51:521

    Article  Google Scholar 

  47. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  48. Koch CC, Morris DG, Lu K, Inoue A (1999) MRS Bulletin 24:54

  49. Karimpoor AA, Erb U, Aust KT, Palumbo G (2003) Scripta Mater 49:651

  50. Li H Ebrahimi F (2004) Appl Phys Lett 84:4307

    Article  Google Scholar 

  51. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87:091904-1

    Article  Google Scholar 

  52. Wang Y, Chen M, Zhou F, Ma E (2002) Nature, 419:912

  53. Tellkamp VL, Melmed A, Lavernia EJ (2001) Metall Mater Trans A 32A:2335

    CAS  Google Scholar 

  54. Witkin D, Lee Z, Rodreguez R, Nutt S, Lavernia EJ (2003) Scripta Mater 49:297

    Article  CAS  Google Scholar 

  55. Shen YF, Lu L, Lu QH, Jin ZH, Lu K (2005) Scripta Mater 52:989

    Article  CAS  Google Scholar 

  56. Youssef KM, Scattergood RO, Murty KL, Koch CC (2005) Scripta Mater 54:251

    Article  Google Scholar 

  57. Rofagha R, Langer R, El AM-Sherik, Erb U, Palumbo G, Aust KT (1991) Scripta Metall Mater 25:2867

    Article  CAS  Google Scholar 

  58. Zeiger W, Schneider M, Scharnweber D, Worch H (1995) NanoStructured Mater 6:1013

    Article  Google Scholar 

  59. Vinogradov A, Mimaki T, Hashimoto S Valiev R (1999) Scripta Mater 41:319

    Article  CAS  Google Scholar 

  60. Lopez-HIRATA VM, Arce-Estrada EM (1997) Electrochimica Acta 42:61

    Article  CAS  Google Scholar 

  61. Kirchheim R, Huang XY, Cui P, Birringer R, Gleiter H (1993) NanoStructured Mater 1:167

    Article  Google Scholar 

  62. Tong HY, Shi FG, Lavernia EJ (1995) Scripta Metall Mater 32:511

    Article  CAS  Google Scholar 

  63. El Kedim O, Paris S, Phigni C, Bernard F, Gaffet E, Minir ZA (2004) Mater Sci Eng A369:49

    CAS  Google Scholar 

  64. Mohan P, Suryanarayana C, Desai V (2004) Proc Intl Conf Nano-Materials Kolkata. p 171

  65. Youssef KM, Koch CC, Fedkiw PS (2004) Corr Sci 46:51

    Article  CAS  Google Scholar 

  66. Palumbo G, Mccrea JL, Erb U (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Sci Publ, p 89

  67. Palumbo G, Gonzalez G, Brennenstuhl AM, Erb U, Shmayda W, Lichtenberger PC (1997) NanoStructured Mater 9:737

    Article  CAS  Google Scholar 

  68. Palumbo G, Erb U, Mccrea JL, Hibbard GD, Brooks I, Gonzalez F, Panagiotopoulos K (2002) AESF SUR/Fin Proc Q 204

  69. Advanced Mateials and Processes, October, 2004, p 13

  70. Nanomat website, www.nanomat.com/index2.html

  71. Wei Q, Ramesh KT, Ma E, Kesckes LJ, Dowding RJ, Kazykanov VU, Valiev RZ (2005) Appl Phys Lett 86:101907

    Article  Google Scholar 

Download references

Acknowledgements

The author’s research related to the topics of the paper is supported by the Department of Energy under grant number DE-FG02-02ER46003 and the National Science Foundation under grant number DMR-0201474. The author would like to thank Dr. Stan Veprek for allowing the use of his description of nanocrystalline coatings and thin films as given in the Introduction section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl C. Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, C.C. Structural nanocrystalline materials: an overview. J Mater Sci 42, 1403–1414 (2007). https://doi.org/10.1007/s10853-006-0609-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0609-3

Keywords

Navigation