Skip to main content
Log in

Superparamagnetic relaxation evidences large surface contribution for the magnetic anisotropy of MnFe204 nanoparticles of ferrofluids

  • 4th Brazilian MRS Meeting
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese ferrite nanoparticles, in the size range 3.3–9.0 nm, are prepared by a hydrothermal coprecipitation process and peptized in aqueous solution. The magnetization curves recorded at room temperature on diluted colloidal sols allow characterizing the distribution of magnetic moment by using a simple Langevin formalism. Mössbauer spectroscopy measurements performed on powder samples at 77 K exhibit a quadrupolar doublet which intensity grows at the expense of the hyperfine sextet pattern as the nanoparticles mean size decreases. The magnetic dynamics behavior is then investigated by measurements of magnetic hysteretic properties at 5 K and temperature dependence of the zero field cooling (ZFC) susceptibility. The values found for the effective anisotropy constant and the dependence of the irreversibility field, inversely proportional to the reference size, clearly indicate that the magnetic anisotropy of our nanoparticles finds its origin on the disordered surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Batle X, Labarta A (2002) J Phys D Appl Phys 35:R15

    Article  Google Scholar 

  2. Kodama RH (1999) J Magn Magn Mat 200:359

    Article  CAS  Google Scholar 

  3. Berkovsky B (1996) Magnetic fluids and applications – Handbook. Begell House, New York, p 36

  4. Rosensweig R (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

  5. Deux JF, Riviere C, Gazeau F, Roger J, Allaire E, Boudghene F, Michel JB, Letourneur D (2003) Circulation 108:2497

    Google Scholar 

  6. Wilhelm C, Gazeau F, Roger J, Pons JN, Salis MF, Perzynski R, Bacri JC (2002) Phys Rev E 66:021203

    Article  Google Scholar 

  7. Raikher YUL, Perzynski R (2005) In: D. Fiorani (ed) Surface effects in magnetic nanoparticles. Springer Publ., New York

  8. Garanin DA, Kachkachi H (2003) Phys Rev Lett 90:065504

    Article  CAS  Google Scholar 

  9. Iglesias O, Labarta A (2005) J Magn Magn Mater 290–291:738

    Article  Google Scholar 

  10. Fiorani D, Testa AM, Lucari F, D’orazio F, Romero H (2002) Physica B 320:122

    Article  CAS  Google Scholar 

  11. Gazeau F, Bacri JC, Gendron F, Perzynski R, Raikher YUL, Stepanov VI, Dubois E (1998) J Magn Magn Mater 186:175

    Article  CAS  Google Scholar 

  12. Aquino R, Depeyrot J, Sousa MH, Tourinho FA, Dubois E, Perzynski R (2005) Phys Rev B 72:184435

    Article  Google Scholar 

  13. Tourinho FA, Franck R, Massart R (1990) J Mater Sci 25:3249

    Article  CAS  Google Scholar 

  14. Sousa MH, Tourinho FA, Depeyrot J, Da Silva GJ, Lara MCFL (2001) J Phys Chem B 105:1168

    Article  CAS  Google Scholar 

  15. Aquino R, Tourinho FA, Itri R, Lara MCFL, Depeyrot J (2002) J Magn Magn Mater 252:23

    Article  CAS  Google Scholar 

  16. Tronc E, Bonnin D (1985) J Phys Lett 46:L437

    Article  Google Scholar 

  17. Cousin F, Dubois E, Cabuil V (2003) Phys Rev E 68:021405

    Article  CAS  Google Scholar 

  18. Gazeau F, Boué F, Dubois E, Perzynski R (2003) J Phys Cond. Mat 15:S1305

    Article  CAS  Google Scholar 

  19. Mørup S, Dumesic JA, Topsøe H (1980) In: L. R. Chen (ed) Applications of Mössbauer pectroscopy, vol. II. Academic Press, New York, p 1

  20. Moumen N, Bonville P, Pileni MP (1996) J Phys Chem 100:14410

    Article  CAS  Google Scholar 

  21. Sousa EC, Sousa MH, Goya GF, Rechenberg HR, Lara MCFL, Tourinho FA, Depeyrot J (2004) J Magn Magn Mater 272:1215

    Article  Google Scholar 

  22. Alves CR, Sousa MH, Aquino R, Rechenberg HR, Goya GF, Tourinho FA, Depeyrot J (2004) J Metastable Nanocryst Mat 21:17

    Google Scholar 

  23. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chatttopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka N, Furubayashi T, Nakatani I (2001) Phys Rev B 63:184108

    Article  Google Scholar 

  24. Mørup S (1983) J Magn Magn Mater 37:39

    Article  Google Scholar 

  25. Cullity BD (1972) Introduction to magnetic materials. Addison Wesley, New York

  26. Kodama RH, Berkowitz AE (1999) Phys Rev B 59:6321

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to L. Legrand, from the Groupe de Physique des Solides of Université Paris 6, which allows us to perform our magnetization measurements using a SQUID magnetometer. This work was supported by the Brazilian agencies Finatec, CNPq and CAPES through the contract of international cooperation CAPES/COFECUB no. 496/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Depeyrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, C.R., Aquino, R., Depeyrot, J. et al. Superparamagnetic relaxation evidences large surface contribution for the magnetic anisotropy of MnFe204 nanoparticles of ferrofluids. J Mater Sci 42, 2297–2303 (2007). https://doi.org/10.1007/s10853-006-0601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0601-y

Keywords

Navigation