Skip to main content

Durability of alkali-activated fly ash cementitious materials

Abstract

The study described in the present paper addresses the durability of alkali-activated fly ash (AAFA) cement under different conditions: specifically, cement performance is measured in a number of aggressive environments (deionized water, ASTM seawater, sodium sulphate and acidic solutions) and with respect to alkali–silica reaction-induced expansion. The chief parameters studied are: weight loss, compressive strength, variations in volume, presence of the products of degradation and microstructural changes. The results show that AAFA pastes perform satisfactorily in aggressive environments and that degradation in these materials is distinctly different from such processes in OPC paste. These mortars are also compliant with the 16-day expansion limit stipulated in ASTM standard C1260-94 on potential alkali–silica reactivity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Krivenko PV (1992) Proceedings of the 4th CANMET-ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete, Istanbul, p 721

  2. Palomo A, Grutzeck MW, Blanco MT (1999) Cem Concr Res 29:1323

    Article  CAS  Google Scholar 

  3. Xu H, van Deventer JSJ (2000) Int J Miner Process 59:247

    Article  CAS  Google Scholar 

  4. Fernández-Jiménez A, Palomo A (2005) Cem Concr Res 35:1984

    Article  CAS  Google Scholar 

  5. van Jaarsveld JGS, van Deventer JSJ (1999) Ind Eng Chem Res 38:3932

    Article  CAS  Google Scholar 

  6. Lee WKW, van Deventer JSJ (2002) Colloids Surf A: Physicochem Eng Aspects 211:49

    Article  CAS  Google Scholar 

  7. Criado M, Palomo A, Fernández-Jiménez A (2005) Fuel 84:2048

    Article  CAS  Google Scholar 

  8. Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2006) Microporous Mesoporous Mater 91:111

    Article  CAS  Google Scholar 

  9. Fernández-Jiménez A, Palomo A, Criado M (2005) Cem Concr Res 35:1204

    Article  CAS  Google Scholar 

  10. Zhaohui X, Yunping X (2001) Cem Concr Res 31:1245

    Article  Google Scholar 

  11. Palomo A, Blanco-Valera MT Granizo ML, Puertas F, Vázquez T, Grutzeck MW (1999) Cem Concr Res 29:997

    Article  CAS  Google Scholar 

  12. Bakharev T (2005) Cem Concr Res 35:658

    Article  CAS  Google Scholar 

  13. Bakharev T (2005) Cem Concr Res 35:1233

    Article  CAS  Google Scholar 

  14. van Jaarsveld JGS, van Deventer JSJ, Lorenzen L (1998) Metall Mater Trans B: Process Metall Mater Process Sci 29(1):283

    Article  Google Scholar 

  15. van Jaarsveld JGS, van Deventer JSJ (1999) Ind Eng Chem Res 38(10):3932

    Article  CAS  Google Scholar 

  16. García-Lodeiro I, Palomo A, Fernandez-Jimenez A (2005) RILEM congress “concrete and reinforced concrete”. ISBN 5–98580-013-X, vol 4, p 452

  17. Fernández-Jiménez A, Palomo A (2003) Fuel 82:2259

    Article  CAS  Google Scholar 

  18. Conner JR (1990) Ed. Van Nostrand Reinhold, New York

  19. Palomo A, Alonso S, Fernández-Jiménez A, Sobrados I, Sanz J (2004) J Am Ceramic Soc 87(6):1141

    CAS  Article  Google Scholar 

  20. Fernández-Jiménez A, Palomo A (2005) Microporous Mesoporous Mater 86:207

    Article  CAS  Google Scholar 

  21. Murayama N, Yamamoto H, Shibata J (2002) Int J Miner Process 64:1

    Article  CAS  Google Scholar 

  22. Palomo A, Fernández-Jiménez A, Criado M (2004) Mater Construc 54:77

    CAS  Article  Google Scholar 

  23. Plum DW, Poulsen E (1958) Ingeniorum Int Ed Danemark 2:26

    Google Scholar 

  24. Dent Glasser LS, Kataoka (1982) Cem Concr Res 12:321

  25. Chatlerji S (1979) Cem Concr Res 9:185

    Article  Google Scholar 

  26. Davies G, Oberholster RE (1988) Cem Concr Res 18:621

    Article  CAS  Google Scholar 

  27. Vucinic D, Miljanovic I, Rosic A, Lazic P (2003) J Serb Chem Soc 68(6):471

    Article  CAS  Google Scholar 

  28. Tanaka H, Matsumura S, Hino R (2004) J Mater Sci 39(5):1677

    Google Scholar 

  29. Molina A, Poole C (2004) Miner Eng 17:167

    Article  CAS  Google Scholar 

  30. Tanaka H, Miyagawa A, Eguchi H, Hino R (2004) Ind Eng Chem Res 43(19):6090

    Article  CAS  Google Scholar 

  31. Swamy RN (1992) Cap.1 Swamy, R.N. Ed. Blackie, New York, p 96

  32. Johansen V, Thaulow N, Skalny J (1993) Adv Cem Res 5:23–29; (b) unpublished data from evaluation of industrial concrete products

    Google Scholar 

  33. Lawrence CD (1995) In: Skalny J, Mindess S (eds) Materials science of concrete IV. The American Ceramic Society, Westerville, OH, p 113

  34. Marusin SL (1995) In: Gouda G, Nisperos A, Bayles J (eds) Proceedings of the 15th international conference on cement microscopy, ICMA, 1993, p 289; see also “Deterioration of railroad ties in the USA”, 1995. In: Proceedings of the CANMET/ACI international workshop on AAR in concrete. Nova Scotia. p 243

  35. Taylor HFW (1994) In: Grutzek MW, Sarkar SL (eds) Advances in cement and concrete. American Society of Civil Engineers; see also “Sulphate reactions—microstructural and chemical aspects”. Cement Technol Ceram Trans 40:61

  36. Neville AM (1995) Ed. Logman, Essex

  37. Engelhardth G, Michel D (1987) Ed. Wiley, New York

  38. Klinowski J (1984) J Prog NMR Spectrosc 237

  39. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A: Physicochem Eng Aspects 269(1–3):47

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the General Direction of Scientific Research (project BIA2004-04835). The CSIC and the European Social Fund co-financed an I3P contract (REF. 13P-PC2004L) in connection with this research. The authors wish to thank J. García and A. Gil for their assistance in the preparation of the mortar specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palomo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernandez-Jimenez, A., García-Lodeiro, I. & Palomo, A. Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42, 3055–3065 (2007). https://doi.org/10.1007/s10853-006-0584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0584-8

Keywords

  • Zeolite
  • Accelerate Test
  • Mortar Specimen
  • Analcime
  • Acid Attack