Skip to main content
Log in

Negative piezoresistivity in continuous carbon fiber epoxy-matrix composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The negative and positive piezoresistivity in continuous carbon fiber epoxy-matrix composite has been clarified. The negative piezoresistivity associated with the increase of the through-thickness resistivity upon longitudinal tension and decrease in the through-thickness resistivity upon longitudinal compression is practically attractive for strain sensing and is attributed to the decrease in the degree of contact between fibers of adjacent laminae upon longitudinal tension. This effect is stronger, more reversible and less prone to causing minor damage for the tension case than the compression case. The positive piezoresistivity associated with the longitudinal resistivity increasing upon longitudinal tension is negligibly weak, if any, independent of the number of laminae. The previously reported negative piezoresistivity associated with the longitudinal resistivity decreasing upon longitudinal tension does not occur for a commercially manufactured composite in which the fibers are well aligned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Grimaldi C, Maeder T, Ryser P, Strassler S (2003) Phys Rev B 67:014205/1

    Article  CAS  Google Scholar 

  2. Wen S, Chung DDL (2005) J Mater Sci 40:3897

    CAS  Google Scholar 

  3. Wang X, Fu X, Chung DDL (1998) J Mater Res 13:3081

    CAS  Google Scholar 

  4. Wang X, Chung DDL (1998) Composites: Part B 29B:63

    Article  CAS  Google Scholar 

  5. Arlen M, Koerner H, Taylor BE, Alexander MD, Vaia R (2006) Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, USA, March 26–30, POLY-357, American Chemical Society, Washington D.C

  6. Eickhoff M, Ambacher O, Krotz G, Stutzmann M (2001) J Appl Phys 90:3383

    Article  CAS  Google Scholar 

  7. Pavlov AN, Raevskii IP (2002) Phys Solid State (Translation of Fizika Tverdogo Tela (Sankt-Peterburg)) 44:1748

  8. Morten B, Taroni A (1975) Lett Nuovo Cimento Soc Italiana Fisica 14:305

    CAS  Google Scholar 

  9. Todoroki A, Yoshida J (2004) JSME Int J A 47:357

    Article  CAS  Google Scholar 

  10. Leong C, Wang S, Chung DDL (2006) J Mater Sci 41:2877

    Article  CAS  Google Scholar 

  11. Wang S, Chung DDL (2006) Carbon 44:2739

    Article  CAS  Google Scholar 

  12. Wang S, Kowalik DP, Chung DDL (2004) Smart Mater Struct 13:562

    Article  CAS  Google Scholar 

  13. Todoroki A, Yoshida J (2005) Key Eng Mater 297–300(Pt. 1, Advances in Fracture and Strength):610

  14. Gordon DA, Wang S, Chung DDL (2004) Composite Interfaces 11:95

    Article  CAS  Google Scholar 

  15. Wang X (1997) PhD dissertation, State University of New York at Buffalo

  16. Wang S, Chung DDL, Chung JH (2005) J Mater Sci 40:6463

    Article  CAS  Google Scholar 

  17. Wang S, Chung DDL (2000) Polym Compos 21:13

    Article  Google Scholar 

  18. Angelidis N, Khemiri N, Irving PR (2002) In: Balagcas DL (ed) Proc first European workshop structural health monitoring 2002, DEStech Publication, Lansacter, Pennsylvania, USA, pp 477–484

  19. Wang S, Chung DDL unpublished result

  20. Wang X, Chung DDL (1998) Composite Interfaces 5:191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Appendix: Glossary

Appendix: Glossary

Negative piezoresistivity A: the resistivity in the through-thickness direction increasing upon uniaxial tension in the longitudinal direction.

Negative piezoresistivity B: the resistivity in the transverse direction decreasing upon uniaxial tension in the longitudinal direction.

Negative piezoresistivity C: the longitudinal resistance decreasing upon compression in the through-thickness direction.

Negative piezoresistivity D: the longitudinal resistivity decreasing upon uniaxial tension in the longitudinal direction.

Positive piezoresistivity A: the contact electrical resistivity of the interlaminar interface decreasing upon compression in the through-thickness direction.

Positive piezoresistivity B: the longitudinal resistivity increasing upon uniaxial tension in the longitudinal direction.

Positive piezoresistivity C: the longitudinal resistivity increasing upon longitudinal tension when the two-probe method is used.

Positive piezoresistivity D: the resistance in the transverse direction increasing with transverse strain/stress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Chung, D.D.L. Negative piezoresistivity in continuous carbon fiber epoxy-matrix composite. J Mater Sci 42, 4987–4995 (2007). https://doi.org/10.1007/s10853-006-0580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0580-z

Keywords

Navigation