Skip to main content
Log in

The formation mechanism of aluminium oxide tunnel barriers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The functional properties of magnetic tunnel junctions are critically dependant on the nanoscale morphology of the insulating barrier (usually only a few atomic layers thick) that separates the two ferromagnetic layers. Three-dimensional atom probe analysis has been used to study the chemistry of a magnetic tunnel junction structure comprising an aluminium oxide barrier formed by in situ oxidation, both in the under-oxidised and fully oxidised states and before and after annealing. Low oxidation times result in discrete oxide islands. Further oxidation leads to a more continuous, but still non-stoichiometric, barrier with evidence that oxidation proceeds along the top of grain boundaries in the underlying CoFe layer. Post-deposition annealing leads to an increase in the barrier area, but only in the case of the fully oxidised and annealed structure is a continuous planar layer formed, which is close to the stoichiometric Al:O ratio of 2:3. These results are surprising, in that the planar layers are usually considered unstable with respect to breaking up into separate islands. Analysis of the various driving forces suggests that the formation of a continuous layer requires a combination of factors, including the strain energy resulting from the expansion of the oxide during internal oxidation on annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barthélémy A, Fert A, Contour J-P, Bowen M, Cros V, de Teresa JM, Hamzic A, Faini JC, George JM, Grollier J, Montaigne F, Pailloux F, Petroff F, Vouille C (2002) J Mag Mag Mat 242–245:68

    Article  Google Scholar 

  2. Jullière M (1975) Phys Lett 54A:225

    Article  Google Scholar 

  3. Moodera JS, Kinder LR, Wong TM, Meservey R (1995) Phys Rev Lett 74:3273

    Article  CAS  Google Scholar 

  4. Moodera JS, Kinder LR, Nowak J, Leclair P, Meservey R (1996) Appl Phys Lett 69:708

    Article  CAS  Google Scholar 

  5. Moodera JS, Kinder LR (1996) J Appl Phys 79:4724

    Article  Google Scholar 

  6. Park BG, Lee TD, Lee TH, Kim CG, Kim CO (2003) J Appl Phys 93:6423

    Article  CAS  Google Scholar 

  7. Bae JS, Shin KH, Lee HM (2002) J Appl Phys 91:7947

    Article  CAS  Google Scholar 

  8. Tsymbal EY, Mryasov ON, Le Clair PR (2003) J Phys Condens Matt 15:R109

    Article  CAS  Google Scholar 

  9. Tsymbal EY, Pettifor DG (1998) Phys Rev B 58:432

    Article  CAS  Google Scholar 

  10. Da Costa V, Tiusan C, Dimopoulos T, Ounadjela K (2000) Phys Rev Lett 85:876

    Article  CAS  Google Scholar 

  11. Rabson DA, Jönsson-Åkerman BJ, Romero AH, Escudero R, Leighton C, Kim S, Schuller IK (2001) J Appl Phys 89:2786

    Article  CAS  Google Scholar 

  12. Shang P, Petford-Long AK, Nickel JH, Sharma M, Anthony TC (2001) J Appl Phys 89:6874

    Article  CAS  Google Scholar 

  13. Ozkaya D, Mcbride W, Cockayne DJH (2004) Interface Sci 12:321

    Article  Google Scholar 

  14. Ozkaya D, Dunin-Borkowski RE, Petford-Long AK, Wong PK, Blamire MG (2000) J Appl Phys 87:5200

    Article  CAS  Google Scholar 

  15. Stobiecki T, Kanak J, Wrona J, Czapkiewicz M, Kim CG, Kim CO, Tsunoda M, Takahashi M (2004) Phys Stat Sol A 201:1621

    Article  CAS  Google Scholar 

  16. Zhu W, Hirschmugl CJ, Laine AD, Sinkovic B, Parkin SSP (2001) Appl Phys Lett 78:3103

    Article  CAS  Google Scholar 

  17. Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) Atom probe field ion microscopy. Oxford University Press, Oxford

    Google Scholar 

  18. Cerezo A, Larson DJ, Smith GDW (2001) MRS Bull 26:102

    Article  CAS  Google Scholar 

  19. Petford-Long AK, Ma YQ, Cerezo A, Larson DJ, Singleton EW, Carr BW (2005) J Appl Phys 98:124904

    Article  Google Scholar 

  20. Larson DJ, Wissman BD, Martens RL, Viellieux RJ, Kelly TF, Gribb TT, Erskine HF, Tabat N (2001) Micro Microanal 7:24

    CAS  Google Scholar 

  21. Larson DJ, Petford-Long AK, Ma YQ, Cerezo A (2004) Acta Mater 52:2847

    Article  CAS  Google Scholar 

  22. Cerezo A, Godfrey TJ, Sibrandij SJ, Smith GDW, Warren PJ (1998) Rev Sci Instrum 69:49

    Article  CAS  Google Scholar 

  23. Lehnert T, Billon D, Grassl C, Grundlach KH (1992) J Appl Phys 72:3165

    Article  CAS  Google Scholar 

  24. Zhou XW, Wadley HNG (2005) Phys Rev B 71:054418

    Article  Google Scholar 

  25. Zhou XW, Wadley HNG, private communication

  26. Larson DJ, Cerezo A, Clifton PH, Petford-Long AK, Martens RL, Kelly TF, Tabat N (2001) J Appl Phys 89:7517

    Article  CAS  Google Scholar 

  27. Gas P, Bergman C, Lábár JL, Barna PB, D’heurle FM (2004) Appl Phys Lett 84:2421

    Article  CAS  Google Scholar 

  28. Buchanan JDR, Hase TPA, Tanner BK, Chen PJ, Gan L, Powell CJ, Egelhoff WF Jr (2003) J Appl Phys 93:8044

    Article  CAS  Google Scholar 

  29. Raynor GV, Rivlin VG (1988) Phase equilibria in iron ternary alloys. Institute of Materials, London, p 76

    Google Scholar 

  30. Macallister AJ (1990) In: Massalski TB, Okamoto H, Subramaniam PR, Kacprzak L (eds) Binary alloy phase diagrams, 2nd edn. ASM International, OH, p 136

  31. Levin EM, Mcmurdie HF (1975) Phase diagrams for ceramicists, 1975 supplement. American Ceramic Society, Columbus, OH, pp 236

    Google Scholar 

  32. Murr LE (1975) Interfacial phenomena in metals and alloys. Addison-Wesley, London

    Google Scholar 

  33. Mchale JM, Auroux A, Perotta AJ, Navrotsky A (1997) Science 277:788

    Article  CAS  Google Scholar 

  34. Levi G, Kaplan WD (1997) Acta Mater 51:788

    Google Scholar 

  35. Ozkaya D, Mcbride W, Cockayne DJH (2004) Interface Sci 12:321

    Article  Google Scholar 

  36. Fei GT, Barnes JP, Petford-Long AK, Doole RC, Serna R, Gonzalo J (2002) J Phys D Appl Phys 35:916

    Article  CAS  Google Scholar 

  37. Weast RC (1983) CRC handbook of chemistry and physics, 63rd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  38. Zhou XW, Wadley HNG, Wang DX, submitted to Comput Mater Sci

  39. Nabarro FRN (1940) Proc Roy Soc A 175:519

    Article  CAS  Google Scholar 

  40. Christian JW (2002) The theory of transformations in metals and alloys, Part I. 2nd edn. Elsevier, pp 464

Download references

Acknowledgements

The authors are grateful to Prof. G.D.W. Smith FRS for provision of laboratory facilities and for helpful discussions during the preparation of this paper. We would also like to thank Xiaowang Zhou, University of Virginia, for valuable contributions on the mechanisms of oxide growth. Laser-pulsed 3DAP experiments were performed at Oxford nanoScience Limited, Milton Keynes, UK and we are grateful to Dr. Peter Clifton for his assistance in the collection of the data. This work was supported by funding from the Engineering and Physical Sciences Research Council. AC is also grateful for support from Oxford nanoScience Limited during the writing of this paper. Argonne National Laboratory is supported by the U.S. Department of Energy, Basic Energy Sciences – Materials Sciences, under contract (W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cerezo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerezo, A., Petford-Long, A.K., Larson, D.J. et al. The formation mechanism of aluminium oxide tunnel barriers. J Mater Sci 41, 7843–7852 (2006). https://doi.org/10.1007/s10853-006-0562-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0562-1

Keywords

Navigation