Advertisement

Journal of Materials Science

, Volume 42, Issue 13, pp 4850–4857 | Cite as

Structure and properties of fibres from sea-grass (Zostera marina)

  • P. DaviesEmail author
  • C. Morvan
  • O. Sire
  • C. Baley
Article

Abstract

This paper presents results from a study of fibres extracted from Zostera marina eel-grass collected from the Baltic coast. This species of sea-grass is shown to contain small diameter (around 5 μm) fibres composed of ∼57% cellulose, ∼38% of non-cellulosic polysaccharides (mainly xylan) and ∼5% of residual matter so-called Klason lignin. This composition is quite different to that of commonly used terrestrial fibres. Single fibre stiffness values up to 28 GPa were measured. This stiffness combined with a low density could provide an attractive reinforcement for composite materials, and may be particularly suitable for use in bio-degradable structures.

Keywords

Lignin Pectin Natural Fibre Single Fibre Secondary Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the assistance of Hervé LeDeit and Melanie Fadel in supplying samples, Sebastien Alix for the hand-cut sections of blades and carmin-green staining, and Gwennina Croizer for fibre extraction studies.

References

  1. 1.
    Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221CrossRefGoogle Scholar
  2. 2.
    Li Y, Mai Y-W, Ye L (2000) Comp Sci & Tech 60:2037CrossRefGoogle Scholar
  3. 3.
    Eichorn SJ et al (2001) J Mat Sci 36:2107CrossRefGoogle Scholar
  4. 4.
    Baley C (2002) Composites Part A 33:939CrossRefGoogle Scholar
  5. 5.
    den Hartog C (1970) The seagrasses of the world, North Holland Publishing Co., AmsterdamGoogle Scholar
  6. 6.
    Krause-Jensen D, Greve TM, Nielsen K (2005) Water Resour Manag 19:63CrossRefGoogle Scholar
  7. 7.
    Jenkins GP, May HMA, Wheatley MJ, Holloway MG (1997) Comparison of fish assemblages associated with seagrass and adjacent unvegetated habitats of Port Phillip Bay and Corner Inlet, Victoria, Australia, with Emphasis on Commercial Species, Estuarine, Coastal and Shelf Science, vol 44. 5, May 1997, 569Google Scholar
  8. 8.
    Valencia ME, Atondo JL, Hernandez G (1985) Ecol Food Nutr 17:165CrossRefGoogle Scholar
  9. 9.
    Irving DW, Breda VA, Becker R, Saunders RM (1988) Ecol Food Nutr 20:263CrossRefGoogle Scholar
  10. 10.
    Hany R, Böhlen C, Geiger T, Schmid M, Zinn M (2004) Biomacromolecules 5(4):1452CrossRefGoogle Scholar
  11. 11.
    Phenolic acid sulphate esters for prevention of marine biofouling. United States Patent. Patent Number 5,607,741. Date of patent Mar. 4, 1997Google Scholar
  12. 12.
    Davies GW (1980) Aquat Bot 8:281CrossRefGoogle Scholar
  13. 13.
    Read J, Smith HG (1919) Aust Inst Sci Ind Bull 14:1Google Scholar
  14. 14.
    Iannace S, Nocilla G, Nicolais L (1999) J Appl Poly Sci 73:583CrossRefGoogle Scholar
  15. 15.
    Morvan C, Ademe-Onzighi C, Girault R, Himmelsbach DS, Driouich A, Akin DE (2003) Plant Physiol Biochem 41:935CrossRefGoogle Scholar
  16. 16.
    Auby I (1991) Contribution à l’étude des herbiers de Zostera noltii dans le basin d’arcachon: dynamique, production et dégradation, macrofaune associée. PhD thesis (in French) Université de Bordeaux I, FranceGoogle Scholar
  17. 17.
    D3822-01 Standard Test Method for Tensile Properties of Single Textile FibersGoogle Scholar
  18. 18.
    Blumenkrantz N, Asboe-Hansen G (1973) Anal Biochem 54:484CrossRefGoogle Scholar
  19. 19.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Anal Chem 28:350CrossRefGoogle Scholar
  20. 20.
    Goubet F, Bourlard T, Girault R, Alexandre C, Vandevelde MC, Morvan C (1995) Carbohydr Polym 27:221CrossRefGoogle Scholar
  21. 21.
    Nabi Saheb D, Jog JP (1999) Adv Polym Technol 18:351CrossRefGoogle Scholar
  22. 22.
    Bisanda ETN, Ansell MP (1992) J Mater Sci 27:1690CrossRefGoogle Scholar
  23. 23.
    Roe PJ, Ansell MP (1985) J Mater Sci 20:4015CrossRefGoogle Scholar
  24. 24.
    Mwaikambo LY, Ansell MP (1999) Die Angewandte Makromolekulare Chemie 272:108CrossRefGoogle Scholar
  25. 25.
    LeChat C, Bunsell AR, Davies P, Piant A (2006) J Mater Sci 41(6):1745CrossRefGoogle Scholar
  26. 26.
    Hull D (1981) An introduction to composite materials. Cambridge University Press, Cambridge, UKGoogle Scholar
  27. 27.
    Garside P, Wyeth P (2003) Stud Conserv 48(4):269Google Scholar
  28. 28.
    Fry SC (1986) Ann Rev Plant Physiol 37:165Google Scholar
  29. 29.
    Aspinal GO (1959) Carbohydr Chem 14:429Google Scholar
  30. 30.
    Lewin M, Pearce EM (eds) (1998) Handbook of fibre science and technology. Marcel Dekker, New York. Vol IV, Fibre Chemistry, 505Google Scholar
  31. 31.
    Batra SK Other long vegetable fibers. In: reference [30]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.IFREMER, Materials & Structures group (ERT/MS)PlouzanéFrance
  2. 2.Université de Rouen, UMR 6037CNRS, IFRMP 23Mont-Saint-AignanFrance
  3. 3.Université de Bretagne Sud, L2PICLorientFrance

Personalised recommendations