Skip to main content
Log in

The crystallographic orientation relationship between Al2O3 and MgAl2O4 in the composite material Al2O3/Al–Mg–Si alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation mechanism of spinels on Al2O3 particles in the Al2O3/Al–1.0 mass% Mg2Si alloy composite material has been investigated by transmission electron microscopy (TEM) in order to determine the crystallographic orientation relationship. A thin sample of the Al2O3/Al–Mg–Si alloy composite material was obtained by the FIB method, and the orientation relationship between Al2O3 and MgAl2O4, which was formed on the surface of Al2O3 particles, was discovered by the TEM technique as follows:

$$ \left\{ {111} \right\}_{{\text{MgAl}}_{\text{2}} {\text{O}}_{\text{4}} } //\left\{ {0001} \right\}_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} } $$
$$ \left[ {2\bar 1\bar 1} \right]_{{\text{MgAl}}_{\text{2}} {\text{O}}_{\text{4}} } //\left[ {2\bar 1\bar 10} \right]_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} } ,\left[ {1\bar 10} \right]_{{\text{MgAl}}_{\text{2}} {\text{O}}_{\text{4}} } //\left[ {1\bar 100} \right]_{{\text{Al}}_{\text{2}} {\text{O}}_{\text{3}} } $$

At the interface between the Al2O3 and the matrix the MgAl2O4 (spinel) crystals had facets of {111} planes. Spinels were not grown as thin films, but as particles consisting of {111} planes. They grow towards both the matrix and the Al2O3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ikeno S, Araki M, Matsuda K, Shinagawa F, Uetani Y (1999) J Japan Inst Light Metal 49:244

    Article  CAS  Google Scholar 

  2. Ikeno S, Matusda K, Teraki T, Terayama K, Rengakuji S, Shinagawa F, Uetani Y (1997) J Japan Inst Light Metal 47:421

    Article  CAS  Google Scholar 

  3. Ikeno S, Matsuda K, Rengakuji S, Uetani Y (2001) J Mater Sci 36:1921

    Article  CAS  Google Scholar 

  4. Ikeno S, Matsui H, Matsuda K, Uetani Y (2000) Mater Sci Forum 331–337:1193

    Article  Google Scholar 

  5. Ikeno S, Furuta K, Teraki T, Matsuda K, Anada H, Uetani Y (1996) J Japan Inst Light Metals 46:9

    Article  CAS  Google Scholar 

  6. Lee KB, Kim YS, Kwon H (1998) Met Mater Trans A 29A:3087

    Article  CAS  Google Scholar 

  7. Lu P, Loehman RE, Ewsuk KG, Fahrenholtz WG (1999) Acta Mater 47:3099

    Article  CAS  Google Scholar 

  8. Rao BS, Jayaram V (2001) Acta Mater 49:2373

    Article  Google Scholar 

  9. Daoud A, Reif W (2002) J Mater Process Tech 123:313

    Article  CAS  Google Scholar 

  10. Thirsk HR, Whitmore EJ (1940) Trans Faraday Soc 36:565

    Article  CAS  Google Scholar 

  11. Li DX, Pirouz P, Heuer AH (1992) Phil Mag A 65:403

    Article  CAS  Google Scholar 

  12. Carter CB, Schmalzried H (1985) Phil Mag A 52:207

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors thank to Mr. Hiroaki Matsui, formerly Master’s Student, Graduate School, Toyama University, is with Aishin-Keikinzoku Co. Ltd. (Toyama, 934-8588, Japan) for his experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeno, S., Matsuda, K., Matsuki, T. et al. The crystallographic orientation relationship between Al2O3 and MgAl2O4 in the composite material Al2O3/Al–Mg–Si alloy. J Mater Sci 42, 5680–5685 (2007). https://doi.org/10.1007/s10853-006-0538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0538-1

Keywords

Navigation