Skip to main content
Log in

Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C

  • Advances in Geopolymer Science & Technology
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The thermal shrinkage and weight loss of a systematic series of geopolymers with nominal composition of NaAlO2(SiO2) z  · 5.5H2O (1.15 ≤ z ≤ 2.15) made by activation of metakaolin with sodium silicate solutions are presented. The thermal behaviour of Na-geopolymers are varied, but may be categorised into four regions of behaviour exhibited by all specimens. This investigation explores the effect of nominal Si/Al on the processes and mechanisms of thermal shrinkage and weight loss throughout constant heating of Na-geopolymer. The overall thermal shrinkage of Na-geopolymer increases with increasing nominal Si/Al, with the onset temperature of structural densification occurring at lower temperature with increasing Si/Al. Thermal shrinkage is observed to result from capillary strain, dehydroxylation and viscous sintering in different temperature regions, and is explored by use of dilatometry, thermogravimetry, nitrogen porosimetry and use of different constant heating rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Davidovits J (1991) J Therm Anal 37(8):1633

    Article  CAS  Google Scholar 

  2. Palomo A, Grutzeck MW, Blanco MT (1999) Cement Concrete Res 29(8):1323

    Article  CAS  Google Scholar 

  3. Rowles M, O’Connor B (2003) J Mater Chem 13(5):1161

    Article  CAS  Google Scholar 

  4. Davidovits N, Davidovics M, Davidovits, Ceramic–ceramic composite material and production method. USP 4,888,311, 19 Dec 1989

  5. Yip CK, Lukey GC, van Deventer JSJ (2003) Ceramic Trans 153:187

    CAS  Google Scholar 

  6. van Jaarsveld JGS, van Deventer JSJ (1999) Cement Concrete Res 29(8):1189

    Article  Google Scholar 

  7. Phair JW, van Deventer JSJ (2002) Int J Mine Process 66(1–4):121

    Article  CAS  Google Scholar 

  8. Barbosa VFF, MacKenzie KJD (2003) Mater Res Bull 38(2):319

    Article  CAS  Google Scholar 

  9. Barbosa VFF, MacKenzie KJD (2003) Mater Lett 57(9–10):1477

    Article  CAS  Google Scholar 

  10. Cheng TW, Chiu JP (2003) Mine Eng 16(3):205

    Article  CAS  Google Scholar 

  11. Rahier H, Simons W, Van Mele B, Biesemans M (1997) J Mater Sci 32(9):2237

    Article  CAS  Google Scholar 

  12. Rahier H, Van Mele B, Biesemans M, Wastiels J, Wu X (1996) J Mater Sci 31(1):71

    Article  CAS  Google Scholar 

  13. Rahier H, Van Mele B, Wastiels J (1996) J Mater Sci 31(1):80

    Article  CAS  Google Scholar 

  14. Duxson P, Lukey GC, Separovic F, van Deventer JSJ (2005) Ind Eng Chem Res 44(4):832

    Article  CAS  Google Scholar 

  15. Duxson P, Provis JL, Lukey GC, van Deventer JSJ, Separovic F (2005) Langmuir 21(7):3028

    Article  CAS  Google Scholar 

  16. van Jaarsveld JGS, van Deventer JSJ (1999) Indus Eng Chem Res 38(10):3932

    Article  Google Scholar 

  17. Aiello R, Crea F, Nastro A, Subotiæ B, Testa F (1991) Zeolites 11(8):767

    Article  CAS  Google Scholar 

  18. Duxson P, Provis JL, Lukey GC, Mallicoat S, Kriven WM, van Deventer JSJ (2005) Colloid Surf A - Physicochem Eng Aspect 269(1–3):47

    Article  CAS  Google Scholar 

  19. Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW (1999) Cement Concrete Res 29(7):997

    Article  CAS  Google Scholar 

  20. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  21. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73(1):373

    Article  CAS  Google Scholar 

  22. Barbosa VFF, MacKenzie KJD, Thaumaturgo C (2000) Int J Inorg Mater 2(4):309

    Article  CAS  Google Scholar 

  23. Brinker CJ, Scherer GW, Roth EP (1985) J Non-Crystal Solids 72(2–3):345

    Article  CAS  Google Scholar 

  24. Duxson P, Mallicoat S, Lukey GC, Kriven WM, van Deventer JSJ (2005) Ceram Trans 165:71

    CAS  Google Scholar 

  25. Barrer RM, Mainwaring DE (1972) J Chem Soc - Dalton Trans 22:2534

    Article  Google Scholar 

  26. Catlow CRA, George AR, Freeman CM (1996) Chem Commun (11):1311

  27. Brinker CJ, Scherer GW (1990) Sol–gel science: the chemistry and physics of sol–gel processing. Academic Press Inc., London, p 980

  28. Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Chem Mater 17(11):2976

    Article  CAS  Google Scholar 

  29. Scherer GW, Brinker CJ, Roth EP (1985) J Non-Crystal Solids 72(2–3):369

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Particulate Fluids Processing Centre (PFPC), a Special Research Centre of the Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannie S. J. van Deventer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duxson, P., Lukey, G.C. & van Deventer, J.S.J. Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J Mater Sci 42, 3044–3054 (2007). https://doi.org/10.1007/s10853-006-0535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0535-4

Keywords

Navigation