Skip to main content
Log in

Combustion and thermal properties of OctaTMA-POSS/PS composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inorganic–organic composites of octa(tetramethylammonium) polyhedral oligomeric silsesquioxanes (OctaTMA-POSS) and polystyrene (PS) were prepared by melt-mixing method. The composites were characterized by Fourier-transform infrared spectrometry (FT-IR), Transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), and thermal gravimetric analysis (TGA). Their flammability was evaluated by cone calorimeter test. The experimental results indicate that OctaTMA-POSS, when present in low ratios (1%–5%, weight ratio) in the composites, can decrease the peak heat release rate (HRR) by 15%, while high ratios of OctaTMA-POSS (20% and 30%) can decrease the peak HRR and the average HRR approximately linearly. Concentration and release rate of carbon monoxide (CO) in the composites combustion are also decreased evidently. Thermal gravimetric analysis under nitrogen and air atmosphere both show that the char yield increases obviously. These advances are attributed to the special properties of OctaTMA-POSS and its dispersion in PS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2

Similar content being viewed by others

References

  1. Giancaspro J, Balaguru P, Lyon R (2004) SAMPE J 40:42

    Google Scholar 

  2. Zhang H, Westmoreland PR, Farris RJ, Coughlin EB, Plichta A, Brzozowski ZK (2002) Polymer 43:5463

    Article  CAS  Google Scholar 

  3. Brzozowski ZK, Kijenska D, Zatorski W (2002) Des Monomers Polym 5:183

    Article  CAS  Google Scholar 

  4. Bourbigot S, Flambard X, Ferreira M, Poutch F (2002) J Fire Sci 20:3

    Article  CAS  Google Scholar 

  5. Chen-Yang YW, Lee HF, Yuan CY (2000) J Polym Sci – Pol Chem 38:972

    Article  CAS  Google Scholar 

  6. Srinivasan S, Kagumba L, Riley DJ, Mcgrath JE (1997) Macromol Symp 122:95

    Article  CAS  Google Scholar 

  7. Kumar D, Khullar M, Gupta AD (1993) Polymer 34:3025

    Article  CAS  Google Scholar 

  8. Gilman JW, Bourbigot S, Shields JR, Nyden M, Kashiwagi T, Davis RD, Vanderhart DL, Demory W, Wilkie CA, Morgan AB, Harris J, Lyon RE (2003) J Mater Sci 38:4451

    Article  CAS  Google Scholar 

  9. Bourbigot S, Vanderhart DL, Gilman JW, Awad WH, Davis RD, Morgan AB, Wilkie CA (2003) J Polym Sci Pol Phys 41:3188

    Article  CAS  Google Scholar 

  10. Bourbigot S, Gilman JW, Wilkie CA (2004) Polym Degrad Stabil 84:483

    Article  CAS  Google Scholar 

  11. Lee A, Lichtenhan JD (1999) J Appl Polym Sci 73:1993

    Article  CAS  Google Scholar 

  12. Lee A, Lichtenhan JD (1998) Macromolecules 31:4970

    Article  CAS  Google Scholar 

  13. Zhang J, Zhang HP (2005) J Fire Sci 23:193

    Article  CAS  Google Scholar 

  14. Chen DZ, Yang HY, He PS, Zhang WA (2005) Compos Sci Technol 65:1593

    Article  CAS  Google Scholar 

  15. Braun U, Schartel B (2005) J Fire Sci 23:5

    Article  CAS  Google Scholar 

  16. Balabanovich AI (2004) J Fire Sci 22:163

    Article  CAS  Google Scholar 

  17. Balabanovich AI, Levchik GF, Yang JH (2002) J Fire Sci 20:519

    Article  CAS  Google Scholar 

  18. Braun U, Schartel B (2004) Macromol Chem Physic 205:2185

    Article  CAS  Google Scholar 

  19. Simonson M, Tullin C, Stripple H (2002) Chemosphere 46:737

    Article  CAS  Google Scholar 

  20. Levchik SV, Bright DA, Moy P, Dashevsky S (2001) J Vinyl Addit Techn 6:123

    Article  Google Scholar 

  21. Murashko EA, Levchik GF, Levchik SV, Bright DA, Dashevsky S (1998) J Fire Sci 16:233

    Article  CAS  Google Scholar 

  22. Boscoletto AB, Checchin M, Milan L, Pannocchia P, Tavan M, Camino G, Luda MP (1998) J Appl Polym Sci 67:2231

    Article  CAS  Google Scholar 

  23. Benrashid R, Nelson GL, Ferm DJ (1994) J Fire Sci 12:529

    Article  CAS  Google Scholar 

  24. Boscoletto AB, Checchin M, Tavan M, Camino G, Costa L, Luda MP (1994) J Appl Polym Sci 53:121

    Article  CAS  Google Scholar 

  25. Boscoletto AB, Checchin M, Milan L, Camino G, Costa L, Luda MP (1993) Makromol Chem-M Symp 74:35

    Article  CAS  Google Scholar 

  26. Roma P, Luda MP, Camino G (1993) Makromol Chem-M Symp 74:299

    Article  CAS  Google Scholar 

  27. Checchin M, Boscoletto AB, Camino G, Luda MP, Costa L (1993) Makromol Chem-M Symp 74:311

    Article  CAS  Google Scholar 

  28. Liu XF, Zhang J, Zhang HP (2004) Acta Polym Sin 5:650

    Google Scholar 

  29. Bhaskar T, Matsui T, Uddin MA, Kaneko J, Muto A, Sakata Y (2003) Appl Catal B-Environ 43:229

    Article  CAS  Google Scholar 

  30. Jakab E, Uddin MA, Bhaskar T, Sakata Y (2003) J Anal Appl Pyrol 68–69:83

    Article  Google Scholar 

  31. Devaux E, Rochery M, Bourbigot S (2002) Fire Mater 26:149

    Article  CAS  Google Scholar 

  32. Bartholmai M, Schartel B (2004) Polym Advan Technol 15:355

    Article  CAS  Google Scholar 

  33. Connell JE, Metcalfe E, Thomas MJK (2000) Polym Int 49:1092

    Article  CAS  Google Scholar 

  34. Liu TM, Baker WE, Langille KB, Nguyen DT, Bernt JO (1998) J Vinyl Addit Techn 4:246

    Article  Google Scholar 

  35. Laine RM (2005) J Mater Chem 15:3725

    Article  CAS  Google Scholar 

  36. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95:1409

    Article  CAS  Google Scholar 

  37. Li GZ, Wang LC, Ni HL, Pittman CU (2001) J Inorg Organomet P 11:123

    Article  CAS  Google Scholar 

  38. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Thermochim Acta 440:36

    Article  CAS  Google Scholar 

  39. Liu L, Hu Y, Li XK, Chen ZY, Fan WC (2005) Thermochim Acta 438:164

    Article  CAS  Google Scholar 

  40. Mya KY, Huang J, Xiao Y, He CB, Siow YP, Dai J (2003) Abstr Pap Am Chem S 226:U528–U529 448-PMSE Part 2

    Google Scholar 

  41. Constable GS, Lesser AJ, Coughlin EB (2004) Macromolecules 37:1276

    Article  CAS  Google Scholar 

  42. Choi J, Yee AF, Laine RM (2003) Macromolecules 36:5666

    Article  CAS  Google Scholar 

  43. Tamaki R, Tanaka Y, Asuncion MZ, Choi JW, Laine RM (2001) J Am Chem Soc 123:12416

    Article  CAS  Google Scholar 

  44. Choi J, Harcup J, Yee AF, Zhu Q, Laine RM (2001) J Am Chem Soc 123:11420

    Article  CAS  Google Scholar 

  45. Tamaki R, Choi J, Laine RM (2003) Chem Mater 15:793

    Article  CAS  Google Scholar 

  46. Kim SG, Choi J, Tamaki R, Laine RM (2005) Polymer 46:4514

    Article  CAS  Google Scholar 

  47. Laine RM, Choi J, Lee I (2001) Adv Mater 13:800

    Article  CAS  Google Scholar 

  48. Fina A, Tabuani D, Frache A, Camino G (2005) Polymer 46:7855

    Article  CAS  Google Scholar 

  49. ISO 5660-1993 (1993) Fire test-reaction to fire part I: Rate of heat release from building products (Cone Calorimeter Method). International Standards Organization (ISO), Geneva

    Google Scholar 

  50. Babrauskas V, Peacock RD (1992) Fire Safety J 18:255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the National Natural Science Foundation of China (No.50403014), Specialized Research Fund for the Doctoral Program of Higher Education (20040358056) and Bolton Fellowship supported by The University of Bolton, UK for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Hu, Y., Song, L. et al. Combustion and thermal properties of OctaTMA-POSS/PS composites. J Mater Sci 42, 4325–4333 (2007). https://doi.org/10.1007/s10853-006-0470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0470-4

Keywords

Navigation