Skip to main content
Log in

Microtexture and electrical properties of PAN-ACF

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructure and electric conductivity of PAN-based activated carbon fibers (PAN-ACF) were investigated using tension and KOH activation. The application of tension during stabilization decreased pore volume as well as specific surface area. Increase of KOH solution concentration caused serious damage to the surface of PAN-ACF. This surface damage of PAN-ACF resulted in increase of specific surface, pore volume and wider pore size distribution. PAN-ACF with higher tension showed higher electric conductivity. However, the electric conductivity was decreased by the increased BET surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  2. Conway BE (1991) J Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  3. Sarangapani S, Tilak BV, Chen CP (1996) J Electrochem Soc 143:3791

    Article  CAS  Google Scholar 

  4. Qu D, Shi H (1998) J Power Sources 74:99

    Article  CAS  Google Scholar 

  5. Yang H, Yoshio M, Isono K, Kuramoto R (2002) Electrochem Solid State Lett 5:A141

    Article  CAS  Google Scholar 

  6. Toyoda M, Tani Y, Soneda Y (2004) Carbon 42:2833

    Article  CAS  Google Scholar 

  7. Kim Y, Horie Y, Matsuzawa Y, Ozaki S, Endo M, Dresselhaus M (2004) Carbon 42:2423

    Article  CAS  Google Scholar 

  8. Zois H, Apekis L, Omastová M (2001) Macromol Symp 170:249

    Article  CAS  Google Scholar 

  9. Brosseau C, Boulic F, Queffelec P, Bourbigot C, Mest YL, Loaec J (1997) J Appl Phys 81:882

    Article  CAS  Google Scholar 

  10. Xiao M, Sun L, Liu J, Li Y, Gong K (2002) Polymer 43:2245

    Article  CAS  Google Scholar 

  11. Brynauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  Google Scholar 

  12. Donnet JB, Wang TK, Rebouillat S, Peng JCM (1998) Carbon fibers. Marcel Dekker, p 85

  13. Otawa T, Yamada M, Tanibata R, Kawakami M (1990) Gas separation technology. Elsevier, New York, p 263

    Google Scholar 

  14. László K, Tombácz E, Josepovits K (2001) Carbon 39:1217

    Article  Google Scholar 

  15. Pamula E, Rouxhet PG (2003) Carbon 41:1905

    Article  CAS  Google Scholar 

  16. Jenkins GM, Kawakura J (1978) in Polymeric carbons. Cambridge University, Cambridge, p 90

  17. Lerner NR (1981) J Appl Phys 52:6757

    Article  CAS  Google Scholar 

  18. Gillespie DJ, Ehrlich AC (1992) J Non- Cryst Solids 144:231

    Article  CAS  Google Scholar 

  19. Butkus AM, Yang CY (1981) Synth Metals 3:151

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Core Technology Development Program of the Ministry of Commerce, Industry and Energy (MOCIE). We are grateful for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.G., Kim, J.Y. & Kim, S.H. Microtexture and electrical properties of PAN-ACF. J Mater Sci 42, 2486–2491 (2007). https://doi.org/10.1007/s10853-006-0462-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0462-4

Keywords

Navigation