Skip to main content
Log in

Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The incorporation of silica nanoparticles into polyethylene has been shown to increase the breakdown strength significantly compared to composites with micron scale fillers. Additionally, the voltage endurance of the nanocomposites is two orders of magnitude higher than that of the base polymer. The most significant difference between micron-scale and nano-scale fillers is the large interfacial area in nanocomposites. Because the interfacial region (interaction zone) is likely to be pivotal in controlling properties, this paper compares the behavior of nanoscale silica/cross-linked low density polyethylene nanocomposites with several silica surface treatments. In addition to breakdown strength and voltage endurance, dielectric spectroscopy, absorption current measurements, and thermally stimulated current determinations (TSC) were performed to elucidate the role of the interface. It was found that a reduction in the mobility in nanocomposites as well as a change in the defect size may be key to explaining the improvement in the properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nelson J, Fothergill JC (2004) Nanotechnology 15:586

    Article  CAS  Google Scholar 

  2. Ma D, Siegel RW, Hong JI, Schadler LS, Mårtensson E, Önneby C (2004) J Mater Res 19(3):857

    Article  CAS  Google Scholar 

  3. Nelson JK, Hu Y (2005) J Phys D (Appl Phys) 38:213

    Article  CAS  Google Scholar 

  4. Nelson JK, Fothergill JC, Dissado LA, Peasgood W (2002) In: Proceedings of the conference on Elec Insul & Dielec Phenom, IEEE, Mexico, pp 295–298

  5. Montanari GC, Fabiani D, Palmieri F, Kaempfer D, Thomann R, Mulhaupt R (2004) IEEE Trans Diel Elect Insul 11(5):754

    Article  CAS  Google Scholar 

  6. Ajayan PM, Braun PV, Schadler LS (2003) In: Nanocomposite Science and Technology, Wiley-VCH Verlag, GmbH&Co. KgaA, Weinham

  7. Tanaka T, Montanari GC, Mülhaupt R (2004) IEEE Trans Diel Elect Insul 11/5:763

    Article  Google Scholar 

  8. Lewis TJ (1994) IEEE Trans Diel Elect Insul 1:812

    Article  CAS  Google Scholar 

  9. Lewis TJ (2004) IEEE Trans Diel Elect Insul 11:739

    Article  CAS  Google Scholar 

  10. Fujita F, Ruike M, Baba M (1996) Conference record of the 1996. IEEE Intl Symp Elec Ins, IEEE, San Francisco 2:738

  11. Khalil MS, Henk PO, Henriksen M (1990) Conference record of the 1990 IEEE International Symp on Elec. Insul; IEEE, Montreal, Canada, p 268

  12. Fothergill JC, Nelson JK, Fu M (2004) Proceedings of the IEEE Conf on Elect Insul & Diel Phenom, CEIDP, Oct. 17–20. pp 406–409

  13. Ma D, Akpalu YA, Li Y, Siegel RW, Schadler LS (2005) J Polym Sci Part B Polym Phys 43(5):463

    Article  Google Scholar 

  14. Malec D, Truong H, Essolbi R, Hoand TG (1998) IEEE Trans Diel Elect Insul 5/2:301

    Article  Google Scholar 

  15. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W (2005) IEEE Trans Diel Elect Insul 12:629

    Article  CAS  Google Scholar 

  16. Lunsford JH (1973) Catal Rev 8(1):135

    Article  CAS  Google Scholar 

  17. Canet D (1996) Nuclear magnetic resonance: concepts and methods. John Wiley & Sons Inc., Chichester, New York

    Google Scholar 

  18. Dissado LA, Fothergill JC (1992) Electrical degradation and breakdown in polymers. Peter Peregrinus Ltd

  19. Ieda M, Mizutani T, Suzuoki Y (1980) Polymers, Memoirs of the Faculty of Engineering, Nagoya University, 32/2

  20. Peacock JA (2000) Handbook of polyethylene: structures, properties and applications. Marcel Dekker, New York

    Book  Google Scholar 

  21. Lichtenecker K, Rother K (1931) Phys Zeit 32:255

    Google Scholar 

  22. Maxwell-Ganet JC (1904) Philos Trans Roy Soc Lond Ser A 203:385

    Article  Google Scholar 

  23. Landau LD, Lifshitz EM (1984) Electrodynamics of continuous media, 2nd edn. Pergamon Press, Oxford

    Chapter  Google Scholar 

  24. Jonscher AK (1983) Dielectric relaxation of solids. Chelsea Dielectric Press

  25. O’Konski J (1960) J Phys Chem 64:605

    Article  Google Scholar 

  26. Maeta S, Sakaguchi K (1980) Jpn J Appl Phys 19/3:519

    Article  Google Scholar 

  27. Van Turnhout J (1975) Thermally stimulated discharge for polymer electrets. Elsevier, Amsterdam

    Google Scholar 

  28. Raju GG (2003) Dielectrics in electric fields. Marcel Dekker, New York

    Book  Google Scholar 

  29. Many A, Rakavy G (1962) Theory of transient-space-charge-limited currents in solids in the presence of trapping. Phys Rev 126/6:1980

    Article  Google Scholar 

  30. Roy M, Nelson JK, Schadler LS, Zou C, Fothergill JC (2005) Ann Rep conf on Electrical Insulation and Dielectric Phenomenon, IEEE, pp 183–186

  31. Artbauer J (1996) J Phys D Appl Phys 29:446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Electric Power Research Institute for the support of this activity and to Professor Fothergill’s research group at the University of Leicester, UK for the contribution of pulsed electroacoustic measurements. Discussions with Dr. Clive Reed on the chemical aspects of this work are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Schadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, M., Nelson, J.K., MacCrone, R.K. et al. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42, 3789–3799 (2007). https://doi.org/10.1007/s10853-006-0413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0413-0

Keywords

Navigation