Skip to main content
Log in

Mechanism of geopolymerization and factors influencing its development: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Geopolymerization is a developing field of research for utilizing solid waste and by-products. It provides a mature and cost-effective solution to many problems where hazardous residue has to be treated and stored under critical environmental conditions. Geopolymer involves the silicates and aluminates of by-products to undergo process of geopolymerization. It is environmentally friendly and need moderate energy to produce. This review presents the work carried out on the chemical reaction, the source materials, and the factor affecting geopolymerization. Literature demonstrates that certain mix compositions and reaction conditions such as Al2O3/SiO2, alkali concentration, curing temperature with curing time, water/solid ratio and pH significantly influences the formation and properties of a geopolymer. It is utilized to manufacture precast structures and non-structural elements, concrete pavements, concrete products and immobilization of toxic metal bearing waste that are resistant to heat and aggressive environment. Geopolymers gain 70% of the final strength in first 3–4 h of curing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Woolard CD, Petrus K, Van Der Horst M (2000) ISSN 0378-4738-Water SA 26:531

    CAS  Google Scholar 

  2. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) ACI Mater J 101:1

    Google Scholar 

  3. Baldwin G, P.E. Rushbrook, Dent CG (1982) The testing of hazardous waste to assess their suitability for landfill disposal. Harwell report, AERE-R10737, November 1982

  4. Wiles CC (1988) Standard handbook of hazardous waste treatment and disposal. McGraw Hills, New York, p 7.85

    Google Scholar 

  5. Hermann E, Kunze C, Gatzweiler R, Kiebig G, Davitovits J (1999) In: Proceedings of Geopolymers, p 211

  6. Buchwald A, Schulz M (2005) Cement Concrete Res 35:968

    Article  CAS  Google Scholar 

  7. Li Z, Ding Z, Zhang Y (2004) In: International workshop on sustainable development and concrete technology. Beijing, p 55

  8. Davitovits J (1991) J Therm Anal 37:1633

    Article  Google Scholar 

  9. Xu H, Van Deventer JSJ (2000) Int J Miner Process 59:247

    Article  CAS  Google Scholar 

  10. Xiong CJ, Ban CH, Pei X, Fang Z (2004) In: International workshop on sustainable development and concrete technology. Beijing, p 299

  11. Hos JP, Mccormick PG (2002) J Mater Sci 37:2311

    Article  CAS  Google Scholar 

  12. Alonso S, Palomo A (2001) Mater Lett 47:55

    Article  CAS  Google Scholar 

  13. Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2002) Chem Eng J 89:63

    Article  Google Scholar 

  14. Van Jaarsveld JSG, Van Deventer JSJ, Lorenzen L (1998) Metal Mater Trans B 29:283

    Article  Google Scholar 

  15. Davidovits J, Sawyer JL (1985) US Patent, No. 4509985

  16. Van Jaarsveld JGS, Van Deventer JSJ, Lorenzen L (1997) Miner Eng 10:659

    Article  Google Scholar 

  17. Xu H, Van Deventer JSJ, (2002) Cement Concrete Res 32:1705

    Article  CAS  Google Scholar 

  18. Van Jaarsveld JGS, Van Deventer JSJ, Lukey GC (2003) Mater Lett 57:1272

    Article  Google Scholar 

  19. Phair JW, Van Deventer JSJ, Smith JD (2004) Appl Sci 19:432

    Google Scholar 

  20. Van Jaarsveld JGS, Van Deventer JSJ, Schwartzman A (1999) Miner Eng 12:75

    Article  Google Scholar 

  21. Phair JW, Van Deventer JSJ (2001) Miner Eng 14:289

    Article  CAS  Google Scholar 

  22. Phair JW, Van Deventer JSJ, Smith JD (2000) Eng Chem Res 39:2925

    Article  CAS  Google Scholar 

  23. Xu H, Van Deventer JSJ (2002) Miner Eng 15:1131

    Article  CAS  Google Scholar 

  24. Feng D, Tan H, Van Deventer JSJ (2004) J Mater Sci 39:571

    Article  CAS  Google Scholar 

  25. Lee WKW, Van Deventer JSJ (2002) Ind Eng Chem Res 41:4550

    Article  CAS  Google Scholar 

  26. Phair JW, Smith JD, Van Deventer JSJ (2003) Mater Lett 57:4356

    Article  CAS  Google Scholar 

  27. Yip CK, Van Deventer JSJ (2003) J Mater Sci 38:3851

    Article  CAS  Google Scholar 

  28. Rees C, Lukey GC, Van Deventer JSJ (2004) In: International symposium of research students on material science and engineering. December 2004, IIT Chennai India

  29. Duxson P, Lukey GC, Van Deventer JSJ (2005) Ind Eng Chem Res 44:832

    Article  CAS  Google Scholar 

  30. Hardjito D, Wallah SE, D.M.J Sumajouw, Rangan BV (2003) In: George Hoff Symposium, ACI, Las Vegas USA

  31. Palomo A, Glasser FP (1992) Brit Ceram Trans J 91:107

    CAS  Google Scholar 

  32. Davitovits J, Davitovits M, Davitovits N (1994) US Patent, No. 5,342,595

  33. Sabir BB, Wild S, Bai J (2001) Cement Concrete Res 23:441

    Article  CAS  Google Scholar 

  34. Jimenez AF, Palomo A (2003) Fuel 82:2259

    Article  Google Scholar 

  35. Terzano R, Spagnuolo M, Medicu L, Vekemans B, Vincze L, Janssens K, Ruggiero P (2005) Environ Sci Technol 39:6280

    Article  CAS  Google Scholar 

  36. Sumajouw DMJ, Hardjito D, Wallah SE, Rangan BV (2004) In: Green Processing 2004. The Australian Institute of Mining and Metallurgy, Fremantle, Western Australia, p 237

  37. Hewlette PC (ed) (1998) In: Lea’s Chemistry of Cement and Concrete, 4th ed. Butterworth Heinmann, New Delhi, p 480

  38. Papadakis VG (2000) Cement Concrete Res 30:1647

    Article  CAS  Google Scholar 

  39. Moropoulou A, Cakmak A, Labropoulos KC, Van Grieken R, Torfs K (2004) Cement Concrete Res 34:1

    Article  CAS  Google Scholar 

  40. Conner JR (1990) Chemical fixation and solidification of hazardous waste. Van Nostrand Reinhold, New York, p 335

    Google Scholar 

  41. Spencer RD (ed) (1993) In: Chemistry of cement solidified waste forms. Lewis publishers, New York, p 3

  42. Palomo A, Grutzeck MW, Blanco MT (1999) Cement Concrete Res 29:1323

    Article  CAS  Google Scholar 

  43. Gourley JT (2003) In: CRC for sustainable resource proceeding materials conference

  44. Kaps CH, Buchwald A (2002) In: Geopolymer 2002, Melbourne, Australia

  45. Wu Z, Naik TR (2004) In: ACI International spring Washington, DC 2004 centennial convention Report No. CBU-2004-06

  46. El-Hosiny F (2002) Ceram-Silikaty 46:63

    CAS  Google Scholar 

  47. Brooks JJ (2002) ACI Mater J 99:591

    CAS  Google Scholar 

  48. Lange LC, Hills CD, Poole AB (1996) Waste Manage 16:757

    Article  CAS  Google Scholar 

  49. Yang CGC, Chen SY (1994) J Hazard Mater 39:317

    Article  CAS  Google Scholar 

  50. Mangialardi T, Paolini AE, Polettini A, Sirini P (1999) J Hazard Mater B 70:53

    Article  CAS  Google Scholar 

  51. Lombardi F, Mangialardi T, Piga L, Sirini P (1998) Waste Manage 18:99

    Article  CAS  Google Scholar 

  52. Swanepoel JC, Syrtdom CA (2002) Appl Geochem 17:1143

    Article  CAS  Google Scholar 

  53. Wang K, Shah SP, Mishulovich A (2004) Cement Concrete Res 34:299

    Article  CAS  Google Scholar 

  54. Puertas F, Martinez-Ramirez S, Alonso S, Vazquez T (2000) Cement Concrete Res 30:1625

    Article  CAS  Google Scholar 

  55. Atkins M, Glasser FP, Jack JJ (1995) Waste Manage 15:127

    Article  CAS  Google Scholar 

  56. Kirschner A, Harmuth H (2004) Ceram-Silikaty 48:117

    CAS  Google Scholar 

  57. Palomo A, Alonso S, Jimenez AF (2004) J Am Soc 87:1141

    CAS  Google Scholar 

  58. Bakharev T (2005) Cement Concerete Res 35:1224

    Article  CAS  Google Scholar 

  59. Ramlochan T, Zacarias P, Thoas MDA, Hooton RD (2003) Cement Concrete Res 33:807

    Article  CAS  Google Scholar 

  60. Cioffi R, Maffucci L, Santoro L (2003) Resour Conserv Recy 40:27

    Article  Google Scholar 

  61. Martinez-Ramirez S, Palomo A (2001) Cement Concrete Res 31:1581

    Article  CAS  Google Scholar 

  62. Palomo A, Lopez de la Fuente JI (2003) Cement Concrete Res 33:281

    Article  CAS  Google Scholar 

  63. Cheng TW, Chin JP (2003) Miner Eng 16:205

    Article  CAS  Google Scholar 

  64. Rahier H, Simons W, Van Mele B (1997) J Mater Sci 32:2237

    Article  CAS  Google Scholar 

  65. Gasteiger HA, Frederik WJ, Streise RC (1992) Ind Eng Chem Res 31:1183

    Article  CAS  Google Scholar 

  66. Poon CS, Azhar S, Anson M, Wong YL (2003) Cement Concrete Comp 25:83

    Article  CAS  Google Scholar 

  67. Querol X, Alastuey A, Turiel JLF, Soler AL (1995) Fuel 74:1226

    Article  CAS  Google Scholar 

  68. Yip CK, Lukey GC, Van Deventer JSJ (2005) Cement Concrete Res 35:1688

    Article  CAS  Google Scholar 

  69. Roy A, Schilling PJ, Eaton HC. US Patent, No. 5435843

  70. Courard L, Darimont A, Schouterden M, Ferauche F, Willem X, Degeimbre R (2003) Cement Concrete Res 33:1473

    Article  CAS  Google Scholar 

  71. Zang S, Gong K, Lu J (2004) Mater Lett 53:1292

    Article  Google Scholar 

  72. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) In: Seventh CANMET/ACI international conference on recent advances in concrete technology. May 2004 Las Vegas USA

  73. Palomo A, Jimenez AF, Criado M (2004) Mater Construct 54:77

    Article  CAS  Google Scholar 

  74. Mohammadi T, Pak A (2003) Sep Purif Technol 30:241

    Article  CAS  Google Scholar 

  75. Madani A, Aznar A, Sanz J, Serratosa JM (1990) J Phys Chem-US 94:760

    Article  CAS  Google Scholar 

  76. Hanzlicek T, Vondrakova MS (2002) Ceram-Silikaty 46:97

    CAS  Google Scholar 

  77. Palomo A, Palacios A (2003) Cement Concrete Res 33:289

    Article  CAS  Google Scholar 

  78. Wallah SE, Hardjito D, Sumajouw DMJ, Rangan BV (2004) In: International conference on fiber composites, high-performance concretes and smart material. ICFRC, Chennai

  79. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) In: 18th Australasian conference on the mechanics of structures and materials (ACMSM)1-3. Perth Australia

  80. Davitovits J (1994) Concrete Int 16:53

    Google Scholar 

  81. Bai J, Wild S, Sabir BB (2002) Cement Concrete Res 32:1813

    Article  CAS  Google Scholar 

  82. Rowles M, Conner B (2003) J Mater Chem 13:1161

    Article  CAS  Google Scholar 

  83. Alonso S, Palomo A (2001) Cement Concrete Res 31:25

    Article  CAS  Google Scholar 

  84. Brough AR, Katz A, Sun GK, Struble LJ, Kirkpatrick RJ, Young JF (2001) Cement Concrete Res 31:1437

    Article  CAS  Google Scholar 

  85. Puertas F, Jimenez AF, Blanco-Varela MT (2004) Cement Concrete Res 34:139

    Article  CAS  Google Scholar 

  86. La Lglesia A, Gonzalez MV, Dufour J (2002) Environ Prog 21:105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubina Chaudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khale, D., Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci 42, 729–746 (2007). https://doi.org/10.1007/s10853-006-0401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0401-4

Keywords

Navigation