Skip to main content
Log in

A new shear technique: Semi Continuous Shear Flow (SCSF) in medium and ultra high molecular weight Polyhydroxybutyrate blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In MMWT/UHMWT PHB blends (99.5/0.5), (99/1), (98/2) and (97/3) we demonstrate that by applying our new shear technique, “semi continuous shear flow”, copious fibre formation is guaranteed, irrespective of the ultra high molecular weight composition. The shishes formed via this technique are extremely stable being able to maintain their stability for at least 5–10 min. When this technique was applied to MMWT/UHMWT PHB blends of compositions (95/5), (90/10) and (85/15) disorientated fibres were observed in the flow direction. On increasing the UHMWT component, distinct unordered and intertwining of fibres resulted and with severe shearing orientation occurred, however shish formation was limited. We propose the optimum conditions for shish formation and the critical molecular weight necessary for entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ray AR, Sharma RJ (1995) Macromol Sci Rev Macromol Phys 35:327

    Article  Google Scholar 

  2. Doi Y (1990). Microbial polyesters, 1st edn. VCH Publishers, New York

    Google Scholar 

  3. De Konig GJM, Lemstra PJ (1992) Polymer 33:3295

    Article  Google Scholar 

  4. De Konig GJM, Lemstra PJ (1993) Polymer 34:4089

    Article  Google Scholar 

  5. Hay JN, Harris A, Biddlestone F, Hammond T (1996) Polym Int 35:4598

    Google Scholar 

  6. Hay JN, Sharma L (2000) Polymer 41: 5749

    Article  CAS  Google Scholar 

  7. Sharma L, Ogino Y, Kanaya T (2004) Macro Mater Eng 289:1059

    Article  CAS  Google Scholar 

  8. Sharma L, Ogino Y, Kanaya T, Iwata T, Doi Y (2004) Macrol Mater Eng 289:1068

    Article  CAS  Google Scholar 

  9. Kumaraswamy G, Issaian AM, Kornfield JA (1999) Macromolecules 22:7537

    Article  Google Scholar 

  10. Kumaraswamy G, Varma RK, Issaian AM, Kornfield JA, Yeh F, Hsiao BS (2001) Polymer 41:8931

    Article  Google Scholar 

  11. Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta Calleja FJ, Ezquerra TA (2001) Polymer 42:5247

    Article  CAS  Google Scholar 

  12. Vleeshouwers S, Hmeijer EH (1996) Rheol Acta 35:391

    Article  CAS  Google Scholar 

  13. Moitzi J, Skalicky P (1993) Polymer 34:3168

    Article  CAS  Google Scholar 

  14. Tribout T, Monasse B, Haudin FJ (1996) Colloid Polym Sci 274:197

    Article  CAS  Google Scholar 

  15. Haudin FJ, Monasse B (1999) J Mater Sci 34:2089

    Article  Google Scholar 

  16. Misra S, Lu FM, Spruiell JE, Richeson GC (1995) J Appl Polym Sci 56:1761

    Article  CAS  Google Scholar 

  17. Sherwood P, Price F, Stein R (1978) J Polym Sci 63:77

    CAS  Google Scholar 

  18. Lagasse R, Maxwell B (1978) Polym Eng Sci 18:215

    Article  Google Scholar 

  19. Wolkowicz M (1978) J Appl Polym Sci 63:365

    CAS  Google Scholar 

  20. Kusaka S, Abe H, Lee SY, Doi Y (1997) Appl Microbiol Biotechnol 47:140

    Article  CAS  Google Scholar 

  21. Iwata T, Aoyagi Y, Fujita M, Yamane H, Doi Y, Suzuki Y, Takeuchi A, Uesugi K (2004) Macromol Rapid Commun 25:1100

    Article  CAS  Google Scholar 

  22. Keller A, Machin MJ (1967) Macromol J Sci Phys Ed (B) 1:41

    Article  CAS  Google Scholar 

  23. Keller A, Kolnaar WHH (1997) In: Processing of polymers, 1st edn, vol. 18. pp 189–268 (chap. 4)

  24. Jerschow P, Janeschitz-Kriegl H (1996) Rheol Acta 35:127

    Article  CAS  Google Scholar 

  25. Jerschow P, Janeschitz-Kriegl H (1997) Intern Polym Proc 12:72

    Article  CAS  Google Scholar 

  26. Hill MJ, Barham PJ, Keller A (1980) Colloid Polym Sci 258:1023

    Article  CAS  Google Scholar 

  27. Hill MJ, Keller A (1981) Colloid Polym Sci 259:335

    Article  CAS  Google Scholar 

  28. Hill MJ, Barham PJ, Keller A (1983) Colloid Polym Sci 261:721

    Article  CAS  Google Scholar 

  29. Binsbergen FL, Lange BG (1968) Polymer 9:23

    Article  CAS  Google Scholar 

  30. Hay JN, Keller A (1967) J Mater Sci 2:538

    Article  CAS  Google Scholar 

  31. Padden FJ, Keith HD (1966) J Appl Physics 37:4013

    Article  CAS  Google Scholar 

  32. Padden FJ, Keith HD (1973) J Appl Physics 44:1217

    Article  CAS  Google Scholar 

  33. Norton DR, Keller A (1985) Polymer 26:704

    Article  CAS  Google Scholar 

  34. Andersen PG, Carr SH (1975) J Mater Sci 10:870

    Article  CAS  Google Scholar 

  35. Lovinger AJ (1983) J Polym Sci Polym Phys Ed 21:97

    Article  CAS  Google Scholar 

  36. Dukovski I, Muthukumar M (2003) J Chem Phys 118:6648

    Article  CAS  Google Scholar 

  37. Graessley WW (1974) Polym Rheol Adv Polym Sci 16:124

    Google Scholar 

  38. Rubinstein M, Colby RH (1988) J Chem Phys 89:5291

    Article  CAS  Google Scholar 

  39. Colby RH, Rubinstein M, Viovy JL (1992) Macromolecules 25:996

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are extremely indebted to and would like to thank JSPS, Japan and The Royal Society, UK for the awarded JSPS fellowship to Dr Lakshmi Sharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, L., Ogino, Y., Kanaya, T. et al. A new shear technique: Semi Continuous Shear Flow (SCSF) in medium and ultra high molecular weight Polyhydroxybutyrate blends. J Mater Sci 41, 5687–5695 (2006). https://doi.org/10.1007/s10853-006-0330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0330-2

Keywords

Navigation