Skip to main content
Log in

Influence of thermal treatment on the water release and the glassy structure of perlite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of slow and rapid thermal treatment on water release and the structure of perlite was investigated by employing complementary techniques including X-ray diffraction, infrared spectroscopy and scanning electron microscopy. The study of several perlite samples, with different grain size and origin, has shown that rapid heating has a more pronounced effect on the glassy structure and that this is the only process capable of leading to perlite grain expansion. This process was simulated in a laboratory furnace allowing the careful control of temperature and time of treatment, and, thus, the description of their influence on the expansion process. The results show that molecular water released between 250 and 550 °C affects mostly the expansion process. Infrared spectroscopy provides evidence for additional water release, through dehydroxylation of Si–OH bonds, that may contribute also to expansion with a simultaneous development of the silicate network. The grain morphology was found to correlate with the expansion ratio. The presence of crystallites in raw perlite was shown to affect also the expansion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Friedman I, Long W, Smith R (1963) J Geophys Res 68:6523

    Article  CAS  Google Scholar 

  2. Zahringer K, Martin J-P, Petit J-P (2001) J Mater Sci 36:2691

    Article  CAS  Google Scholar 

  3. Klipfel A, Founti M, Zahringer K, Martin J-P, Petit J-P (1998) Flow Turbul Combust 60:283

    Article  CAS  Google Scholar 

  4. Zahringer K, Martin J-P, Petit J-P (2001) Glass Sci Technol 74:57

    CAS  Google Scholar 

  5. Papanastassiou D (1980) J Trans Inst Min Metall (Sect C: Mineral Process Extr Metall) 89:120

    CAS  Google Scholar 

  6. Dogan M, Alkan M, Chakir U (1997) J Colloid Interf Sci 192:114

    Article  CAS  Google Scholar 

  7. Alkan M, Dogan M (1998) J Colloid Interf Sci 207:90

    Article  CAS  Google Scholar 

  8. Laskowski JS (1993) J Colloid Interf Sci 159:349

    Article  CAS  Google Scholar 

  9. Davis B, Mcphie J (1996) J Volcanol Geotherm Res 71:1

    Article  CAS  Google Scholar 

  10. Tarasevich YI, Verlinskaya RM, Nesterova MP, Gornitskii AB (1986) Khimiya I Tekhnologiya Vody 8:34

    Google Scholar 

  11. Tarasevich YI, Panasevich AA, Bezorudko OV, Skrylev LD, Purich AA (1985) Khimiya I Tekhnologiya Vody 7:67

    CAS  Google Scholar 

  12. Roulia M, Chassapis K, Fotinopoulos C, Savvidis T, Katakis D (2003) Spill Sci Technol 8:425

    Article  CAS  Google Scholar 

  13. Koumanova B, Peeva-Antova P (2002) J Hazard Mater A 90:229

    Article  CAS  Google Scholar 

  14. Dogan M, Alkan M, Onganer Y (2000) Water Air Soil Poll 120:229

    Article  CAS  Google Scholar 

  15. Khodabandeh S, Davis M (1997) Microporous Mater 9:161

    Article  CAS  Google Scholar 

  16. Christidis GE, Paspaliaris I, Kontopoulos A (1999) Appl Clay Sci 15:305

    Article  CAS  Google Scholar 

  17. Dogan M, Alkan M (2003) Chemosphere 50:517

    Article  CAS  Google Scholar 

  18. Alkan M, Dogan M (2001) J Colloid Interf Sci 243:280

    Article  CAS  Google Scholar 

  19. Sodeyama K, Sakka Y, Kamino Y (1999) J Mater Sci 34:2461

    Article  CAS  Google Scholar 

  20. Tazaki K, Tiba T, Aratani M, Miyachi M (1992) Clay Clay Miner 40:122

    Article  CAS  Google Scholar 

  21. Stolper E (1982) Contrib Mineral Petr 81:1

    Article  CAS  Google Scholar 

  22. Lehmann H, Rössler M (1974) Therm Anal 1:619

    Google Scholar 

  23. Kamitsos EI, Patsis AP, Karakassides MA, Chryssikos GD (1990) J Non-Cryst Solids 126:52

    Article  CAS  Google Scholar 

  24. Bertoluzza A, Fagnano C, Morelli MA, Cottardi V, Guglielmi M (1982) J Non-Cryst Solids 48:117

    Article  CAS  Google Scholar 

  25. Yoshino H, Kamiya K, Nasu H (1990) J Non-Cryst Solids 126:68

    Article  CAS  Google Scholar 

  26. Kamitsos EI, Patsis AP and Kordas G (1993) Phys Rev B 48:12499; Kamitsos EI (1996) Phys Rev B 53:14659

  27. Ingram MD, Davinson JE, Coats AM, Kamitsos EI, Kapoutsis JA (2000) Glastech Ber Glass Sci Technol 73:89

    CAS  Google Scholar 

  28. Kamitsos EI, Kapoutsis JA, Jain H, Hsieh CH (1994) J Non-Cryst Solids 171:31 and references therein

    Article  CAS  Google Scholar 

  29. Friedman I, Smith R, Long W (1966) Geol Soc Am Bull 77:323

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Greek General Secretariat for Research and Technology. Dr Y.D. Yiannopoulos is gratefully acknowledged for his help with infrared studies at NHRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roulia.

Additional information

Dedicated to the memory of Professor D. Katakis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roulia, M., Chassapis, K., Kapoutsis, J.A. et al. Influence of thermal treatment on the water release and the glassy structure of perlite. J Mater Sci 41, 5870–5881 (2006). https://doi.org/10.1007/s10853-006-0325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0325-z

Keywords

Navigation