Skip to main content
Log in

Textured mullite at muscovite–kaolinite interface

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mullite crystallization was carried out by the inter-reaction of alternate layers of muscovite and kaolinite minerals. The nucleation and growth of mullite anisotropic crystals take place along the muscovite plane and specific structural relationships are observed, which confirm a topotactic effect with the high temperature form of muscovite. The [001]mull axis is oriented parallel to [010]musc, [310]musc and \( \left[ {\bar 310} \right]_{{\text{musc}}}\) axes. The mullite orientation is fully completed in a temperature range between the ternary eutectic at 985 °C and the ternary transition point at 1140 °C, of the SiO2–Al2O3–K2O system, which strongly suggests an influence of a small quantity of liquid phase at the interface. Along the kaolinite–muscovite interface, the realisation of highly textured ceramics can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Takenaka T, Sakata K (1980) Jpn J Appl Phys 19(1):31

    Article  CAS  Google Scholar 

  2. Igarashi H, Matsunaga K, Taniai T, Okazaki K (1978) Am Ceram Soc Bull 57(9):815

    CAS  Google Scholar 

  3. Youngblood GE, Gordon RS (1978) Ceram Int 4(3):93

    Article  CAS  Google Scholar 

  4. Hirao K, Ohashi M, Brito ME, Kanzaki S (1995) J Am Ceram Soc 78(6):1687

    Article  CAS  Google Scholar 

  5. Seong-Hyong Hong, Messing GL (1999) J Am Ceram Soc 82(4):867

    Article  Google Scholar 

  6. Kathryn L, Nagy L, Randall T, Cygan JM, Neil C (1999) Geochim Cosmochim Acta 63(16):2337

    Article  Google Scholar 

  7. Wang ZJ, Bi HY, Kokawa H, Zhang L, Tsaur J, Ichiki M, Maeda R (2004) J Eur Ceram Soc 24(6):1629

    Article  CAS  Google Scholar 

  8. Grim RE, Bradley WF, Brown G (1951) The mica clay minerals Brindley GW (ed) Mineralogical Society, London, 138

  9. MacKenzie RC, Milne AA (1953) Mineral Mag 30:178

    CAS  Google Scholar 

  10. Guggenheim S, Chang YH, Koster van Groos AF (1987) Am Mineral 72:537

    CAS  Google Scholar 

  11. Udagawa S, Urabe K, Hasu H (1974) Jap Assoc Mineral Petrol Econ Geol 69:281

    Google Scholar 

  12. Mazzucato E, Artioli G, Gualtieri A (1999) Phys Chem Miner 26:375

    Article  CAS  Google Scholar 

  13. Osborn EF, Muan A (1960) Phase Equilibrium Diagrams of Oxide Systems, The American Ceramic Society and the Edouard Orton Jr. Ceramic Foundation, Columbus, Ohio

    Google Scholar 

  14. Carty W, Senapati U (1998) J Am Ceram Soc 81(1):3

    Article  CAS  Google Scholar 

  15. Bellotto M, Gualtieri A, Artioli G, Dark SM (1995) Phys Chem Miner 22:207

    Article  CAS  Google Scholar 

  16. Bellotto M, Gualtieri A, Artioli G, Dark SM (1995) Phys Chem Miner 22:215

    Article  Google Scholar 

  17. Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures, Springer-Verlag, Berlin, 233–303

    Google Scholar 

  18. Artioli G, Bellotto M, Gualtieri A, Pavese A (1995) Clays Clay Miner 4:438

    Article  Google Scholar 

  19. Rocha J, Klinowski J (1990) Phys Chem Miner 17:179

    Article  CAS  Google Scholar 

  20. Sanz J, Madani A, Serratosa JM, Moya JS, Aza S (1988) J Am Ceram Soc 71(10):C418

    Article  CAS  Google Scholar 

  21. Gualtieri A, Bellotto M (1998) Phys Chem Miner 25:442

    Article  CAS  Google Scholar 

  22. Klein HH, Stern WB, Weber W (1982) Schweizerische Mineralogische und Petrographische Mitteilungen 62(1):145

    CAS  Google Scholar 

  23. Pruett RJ, Webb HL (1993) Clays Clay Miner 41:514

    Article  CAS  Google Scholar 

  24. Egami T, Billinge SJL (2003) Mater Today 6(6):57

    Article  Google Scholar 

  25. Jeong IK, Thompson J, Proffen Th, Turner AMP, Billinge SJL (2001) J Appl Crystallogr 34(4):536

    Article  CAS  Google Scholar 

  26. Proffen Th, Billinge SJL (1999) J Appl Crystallogr 32(3):572

    Article  CAS  Google Scholar 

  27. Liang J, Hawthorne FC (1996) Can Mineral 34:115

    CAS  Google Scholar 

  28. Eberhart JP (1963) Bul Soc Fr Miner Cristallogr 86:213

    CAS  Google Scholar 

  29. Nicol AW (1964) Clays Clay Miner 12:11

    Article  Google Scholar 

  30. Catti M, Ferraris G, Ivaldi G (1989) Eur J Mineral 1:625

    Article  CAS  Google Scholar 

  31. Vassanyi I, Szabo A (1993) Mater Sci Forum 133–136:655

    Article  Google Scholar 

  32. Castelein O, Soulestin B, Bonnet JP, Blanchart P (2001) Ceram Int 27(5):517

    Article  CAS  Google Scholar 

  33. Ban T, Okada K (1992) J Am Soc 75(1):227

    CAS  Google Scholar 

  34. Rodriguez-Navarro C, Cultrone G, Sanchez-Navas A, Sebastian E (2003) Am Miner 88:713

    Article  CAS  Google Scholar 

  35. Mackenzie KJD, Brown IWM, Cardile CM, Meinhold RH (1987) J Mat Sci 22:2645

    Article  CAS  Google Scholar 

  36. Lee Sujeong, Kim Youn Joong, Moon Hi-Soo (1999) J Am Ceram Soc 82(10):2841

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Blanchart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecomte, G., Blanchart, P. Textured mullite at muscovite–kaolinite interface. J Mater Sci 41, 4937–4943 (2006). https://doi.org/10.1007/s10853-006-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0320-4

Keywords

Navigation