Skip to main content
Log in

Elastic–plastic thermomechanical response of composite co-axial cylinders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new method is developed in this paper to deal with the thermomechanical response of continuous fiber-reinforced composites. Treating the matrix as an elastic-perfectly plastic solid, the analytical formulae of the deformations and stresses of the matrix are obtained from the plasticity theory, axisymmetric equilibrium equation, and stress–strain and strain–displacement relations. The fiber is taken to be an anisotropic, elastic material, and the formulae calculating its deformations and stresses are also presented. The boundary conditions and the consistence of deformations and stresses between the fiber and matrix, and between elastic and plastic regions of the matrix are employed to determine the unknown constants in the analytical formulae. With the developed method, the thermomechanical stress distributions in composites reinforced with circumferentially orthotropic, radially orthotropic and transversely isotropic fibers are investigated, and how the elastic-perfectly plastic property and different materials of the matrix affect the thermomechanical response of the composites is discussed. For the thermomechanical loads and composite systems given in this paper, the elastic-perfectly plastic property of the matrix can reduce the compressive stresses in the fiber, and the tensile circumferential and axial stresses in the matrix. A strong matrix can raise the compressive stresses in the fiber, and the tensile circumferential and axial stresses in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Iesan D (1980) J Therm stress 3(4):495

    Article  Google Scholar 

  2. Mikata Y, Taya M (1985) J Composite Mater 19:554

    Article  Google Scholar 

  3. Arsenault RJ, Taya M (1987) Acta Metallurgica 35(3):651

    Article  CAS  Google Scholar 

  4. Warwick CM, Clyne TW (1991) J Mater Sci 26:3817

    Article  CAS  Google Scholar 

  5. Gardner SD, Pittman CU Jr, Hackett RM (1993) Compos Sci Technol 46(4):307

    Article  CAS  Google Scholar 

  6. Gardner SD, Pittman CU Jr, Hackett RM (1993) J Compos Mater 27(8):830

    Article  CAS  Google Scholar 

  7. Jayaraman K, Reifsnider KL (1992) J Compos Mater 26(6):770

    Article  CAS  Google Scholar 

  8. Jayaraman K, Reifsnider KL (1993) Compos Sci Technol 47(2):119

    Article  CAS  Google Scholar 

  9. Szyszkowski W, King J (1995) Comput Struct 56(2–3):345

    Article  Google Scholar 

  10. Zhang H, Anderson PM, Daehn GS (1994) Metallurg Mater Trans A 25A:415

    Article  Google Scholar 

  11. Choo H, Bourke MAM, Daymond MR (2001) Compos Sci Technol 61:1757

    Article  CAS  Google Scholar 

  12. You LH, Long S (1998) Compos Part A 29A:1185

    Article  CAS  Google Scholar 

  13. You LH, Long S, Rohr L (1999) J Appl Mech Trans Am Soc Mech Eng 66:750

    Article  Google Scholar 

  14. Khan AS, Huang S (1995) Continuum theory of plasticity. John Wiley & Sons, Inc

  15. You LH (2002) Compos Sci Technol 62:2209

    Article  Google Scholar 

  16. Avery WB, Herakovich CT (1986) J Appl Mech Trans Am Soc Mech Eng 53:751

    Article  Google Scholar 

  17. You LH (2002) Sci Eng Compos Mater 10(4):297

    Article  Google Scholar 

  18. You LH (2002) Metallurg Mater Trans A 34A:883

    Google Scholar 

  19. Pindera M-P, Freed AD, Arnold SM (1993) Int J Solids Struct 30(9):1213

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, L.H., Zheng, Z.Y. Elastic–plastic thermomechanical response of composite co-axial cylinders. J Mater Sci 41, 4901–4913 (2006). https://doi.org/10.1007/s10853-006-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0319-x

Keywords

Navigation