Advertisement

Journal of Materials Science

, Volume 41, Issue 20, pp 6737–6750 | Cite as

Bridging the length-scale gap—short fibre composite material as an example

  • R. Pyrz
  • J. Schjødt-Thomsen
Article

Abstract

A sequential modelling approach consisting of passing information across length scales is presented to simulate macroscopic behavior of composite materials. The modeling procedure utilizes a proper flow of information from molecular scale to macroscopic scale including material characteristics at different length scales. Both molecular dynamics and analytical/numerical methods were used in the multiscale analysis together with some experimental observations obtained from Raman microspectroscopy and X-ray microtomography. The multiscale procedure is systematically applied to short glass fibre polypropylene composite material.

Keywords

Residual Stress Representative Volume Element Creep Strain Orientation Distribution Function Aggregate Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like sincerely to acknowledge Dr. A.S. Nielsen for providing some numerical data and micrographs contained in this research work.

References

  1. 1.
    Zhou M, McDowell DL (2002) Phil Mag A 82:2547CrossRefGoogle Scholar
  2. 2.
    Chen Y, Lee JD (2003) Physica A 322:359CrossRefGoogle Scholar
  3. 3.
    Chen Y, Lee JD, Eskandrian A (2003) Acta Mech 161:81CrossRefGoogle Scholar
  4. 4.
    Picu RC (2002) J Mech Phys Sol 50:1923CrossRefGoogle Scholar
  5. 5.
    Liu B, Huang Y, Jiang H, Qu S, Hwang KC (2004) Comput Methods Appl Mech Eng 193:1849CrossRefGoogle Scholar
  6. 6.
    Tadmor EB, Phillips R, Ortiz M (1996) Langmuir 12:4529CrossRefGoogle Scholar
  7. 7.
    Knap J, Ortiz M (2001) J Mech Phys Sol 49:1899CrossRefGoogle Scholar
  8. 8.
    Miller RE, Tadmor EB (2002) J Comp Aided Mat Des 9:203CrossRefGoogle Scholar
  9. 9.
    Rudd RE, Broughton JQ (2000) Phys Stat Solidi B 217:251CrossRefGoogle Scholar
  10. 10.
    Wagner GJ, Liu WK (2003) J Comp Phys 190:249CrossRefGoogle Scholar
  11. 11.
    Mura T (1987) Micromechanics of defects in solids. Kluwer, DordrechtGoogle Scholar
  12. 12.
    Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. North-Holland, AmsterdamGoogle Scholar
  13. 13.
    Nielsen AS, Pyrz R (2003) J Mat Sci 38:597CrossRefGoogle Scholar
  14. 14.
    Dewar MJS, Jie C (1987) Organometallics 6:1486CrossRefGoogle Scholar
  15. 15.
    Isasi IR, Alamo RG, Mandelkern L (1997) J Polym Sci Polym Phys 35:2945CrossRefGoogle Scholar
  16. 16.
    Hardy RJ (1982) J Chem Phys 76:622CrossRefGoogle Scholar
  17. 17.
    Delph TJ (2005) Modell Simul Mater Sci Eng 13:585CrossRefGoogle Scholar
  18. 18.
    Pyrz R (2005) In: Sadowski T (ed) Proceedings of the IUTAM symposium on multiscale modelling of damage and fracture process in composite materials, Kazimierz Dolny, Kluwer, Dordrecht, in printGoogle Scholar
  19. 19.
    Bower DI, Maddams WF (1992) The vibrational spectroscopy of polymers. Cambridge University PressGoogle Scholar
  20. 20.
    Nielsen AS, Batchelder DN, Pyrz R (2002) Polymer 43:2671CrossRefGoogle Scholar
  21. 21.
    Nielsen AS, Micromechanical modeling of thermal stresses in polymer matrix composites based on Raman microscopy, Ph.D. thesis, Special Report No. 43, Aalborg University, May 2000Google Scholar
  22. 22.
    Nielsen AS and Pyrz R, Report, August 2001, Institute of Mechanical Engineering, Aalborg University, ISBN 87-89206-54-1Google Scholar
  23. 23.
    Budiansky B, Hutchinson JW, Evans AG (1986) J Mech Phys Solids 34:167CrossRefGoogle Scholar
  24. 24.
    Schapery RA (1967) J Comp Mat 1:228Google Scholar
  25. 25.
    Aboudi J (1991) Mechanics of composite materials. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Dvorak GJ (1992) Proc R Soc Lond A 437(8):311Google Scholar
  27. 27.
    Zhu ZG, Weng GJ (1990) Mech Mater 9:93CrossRefGoogle Scholar
  28. 28.
    Takao Y, Chou TW, Taya M (1982) J Appl Mech 49:536CrossRefGoogle Scholar
  29. 29.
    Schjødt-Thomsen J, Pyrz R (2000) Mech Mater 32:349CrossRefGoogle Scholar
  30. 30.
    Schjødt-Thomsen J, Pyrz R (2001) Comp Sci Techn 61:697CrossRefGoogle Scholar
  31. 31.
    Schjødt-Thomsen J, Pyrz R (2002) Key Engng Mater 221–222:267CrossRefGoogle Scholar
  32. 32.
    Mori T, Tanaka K (1973) Acta Metall 21:571CrossRefGoogle Scholar
  33. 33.
    From PS, Pyrz R (1999) Sci Engng Comp Mater 8:143Google Scholar
  34. 34.
    Pyrz R (2000) In: Wojnar L, Rozniatowski K (eds) Proceeding of 6th International conference on stereology and image analysis in materials science, Cracow, Mes-Print, Cracow, 59Google Scholar
  35. 35.
    Nygaard JV, Pyrz R (2003) Cellular Polym 22:347Google Scholar
  36. 36.
    Pyrz R, Nygaard JV, In: d. Bruno et al. (eds) Proceeding of the International Conference Composites in Structures, Cosenza, September 2003, Editoriale-Bios, Cosenza, 189Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of Mechanical EngineeringAalborg UniversityAalborg EastDenmark

Personalised recommendations