Journal of Materials Science

, Volume 41, Issue 20, pp 6591–6598 | Cite as

Meso-macro approach for composites forming simulation

  • Philippe Boisse


The F.E. analysis of woven composite reinforcement forming is an alternative to geometrical draping computation. It permits to account for mechanical behaviours of the fabric and static boundary conditions of the process. In this paper, macroscopic forming simulations of woven composite reinforcements are performed using finite elements composed of woven cells, the mechanical behaviour of which are computed by F.E. analyses at mesoscale i.e. on the unit cell of the fabric. The objective is to only calculate the relevant quantities in the woven finite element. The in-plane biaxiale tensile behaviour and the in-plane shear behaviour are obtained by 3D analyses of the woven cell submitted respectively to tension and shear. They need to take the specificities of the mechanical behaviour of the yarn (made of thousand of fibres) into account. Especially an objective derivative based on the fibre rotation is used. These computations on the unit woven cell have proved to be consistent with experimental tests. An example of deep drawing of a square box using the proposed approach is presented. Angles between warp and weft directions are computed as well as wrinkles.


Shear Angle Biaxial Tension Weft Yarn Weft Direction Spurious Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledge the support provided by the EADS aeronautical company and the researchers of his former laboratory: the LMSP Paris-Orléans.


  1. 1.
    Bickerton S, Simacek P, Guglielmi SE, Advani SG (1997) Comp Part A 28:801CrossRefGoogle Scholar
  2. 2.
    Parnas RS (2000) Liquid composite molding. Hanser Garner publicationsGoogle Scholar
  3. 3.
    Van Der Ween F (1991) Intl J Numer Method Eng 31:1414Google Scholar
  4. 4.
    Long AC, Rudd CD (1994) I Mech E J Eng Manuf 208:269Google Scholar
  5. 5.
    Borouchaki H, Cherouat A (2002) Revue des composites et matériaux avancés, 12/3:407Google Scholar
  6. 6.
    Boisse P, Daniel JL, Hivet G, Soulat D (2001) Intl J Form Proc 3(3-4):351Google Scholar
  7. 7.
    Boisse Ph, Cherouat A, Gelin JC, Sabhi H (1995) Polymer Comp 16(1):83Google Scholar
  8. 8.
    De Luca P, Lefebure P, Pickett AK (1998) Comp Part A 29:101CrossRefGoogle Scholar
  9. 9.
    Hsiao S-W, Kikuchi N (1999) Comp Met Appl Mech Eng 177:1CrossRefGoogle Scholar
  10. 10.
    King MJ, Socrate S, Jearanaisilawong P (2005) Intl J Solids Struct 42:3867CrossRefGoogle Scholar
  11. 11.
    Durville D (2002) Finite Element Euro Revue 11(2-3-4):463Google Scholar
  12. 12.
    Kawabata S, Niwa M, Kawai H (1973) J Textile Inst 64:21CrossRefGoogle Scholar
  13. 13.
    Hivet G (2002) Modélisation mesoscopique du comportement biaxial et de la mise en forme des renforts de composites tissés, Ph.D. Thesis, University of OrléansGoogle Scholar
  14. 14.
    Lomov SV, Truong Chi T, Verpoest I, Peeters T, Roose D, Boisse P, Gasser A (2003) Intl J Form Proc 6(3-4):413Google Scholar
  15. 15.
    Sagar TV, Potluri P, Hearle JWS (2003) Comp Mater Sci 28:49CrossRefGoogle Scholar
  16. 16.
    Ben Boubaker B, Haussy B, Ganghoffer JF (2002) CRAS Paris Mech Ser 330:871Google Scholar
  17. 17.
    Ben Boubaker B, Haussy B, Ganghoffer JF (2005) Euro J Comp Mech 14(6--7):653Google Scholar
  18. 18.
    Spencer AJM (2000) Comp Part A 31:1311CrossRefGoogle Scholar
  19. 19.
    Xue P, Peng X, Cao J (2003) Comp Part A 34:183CrossRefGoogle Scholar
  20. 20.
    Yu X, Ye L, Mai Y-W (2004) Proceedings of the Int. Conf ESAFORM 7, Trondheim, pp 325–328Google Scholar
  21. 21.
    Zouari B, Daniel JL, Boisse P (2005) Comp Struct 84:351Google Scholar
  22. 22.
    Buet-Gautier K, Boisse P (2001) Exp Mech 41:260CrossRefGoogle Scholar
  23. 23.
    Dumont F (2003) Contribution à l’expérimentation et à la modélisation du comportement mécanique de renforts de composites tissés’, Ph.D. Thesis, Université Paris 6Google Scholar
  24. 24.
    Lomov SV, Stoilova T, Verpoest I (2004) In: Proceedings of the Int. Conf ESAFORM 7, TrondheimGoogle Scholar
  25. 25.
    Gasser A, Boisse P, Hanklar S (2000) Comput Mater Sci 17:7CrossRefGoogle Scholar
  26. 26.
    Boisse P, Gasser A, Hivet G (2001) Comp Part A 32:1395CrossRefGoogle Scholar
  27. 27.
    Schnur DS, Zabaras N (1992) Intl J Numer Met Eng 33:2039CrossRefGoogle Scholar
  28. 28.
    Gutowski TG (1985) SAMPE Quart 16(4):58Google Scholar
  29. 29.
    Baoxing C, Chou TW (1999) Composite Sci Tech 59:1519CrossRefGoogle Scholar
  30. 30.
    Hughes TJR (1987) The finite element method, Linear Static and Dynamic finite element Analysis. Prentice HallGoogle Scholar
  31. 31.
    Flanagan DP, Belytschko T (1981) Intl J Numer Met Eng 17:679CrossRefGoogle Scholar
  32. 32.
    Pian TH, Chen DO (1983) Intl J Numer Met Eng 19:1741CrossRefGoogle Scholar
  33. 33.
    Gilormini P, Roudier P, Abaqus and finite strain (1993) Internal report, LMT Cachan 140Google Scholar
  34. 34.
    Dafalias YF (1983) Trans ASME J Ap Mech 50:561Google Scholar
  35. 35.
    Gilormini P, Roudier P, Rougee P (1993) Comptes-rendus à l’Académie des Sciences de Paris 316(II):1659Google Scholar
  36. 36.
    Dienes JK (1979) Acta Mech 32:217CrossRefGoogle Scholar
  37. 37.
    Crisfield MA (1991) Non linear finite element analysis of solids and structures, vol. II: Advanced topics. John Wiley & Sons, EnglandGoogle Scholar
  38. 38.
    Hagege B (2004) Simulation du comportement mecanique des renforts fibreux en grandes transformations : application aux renforts tricotes, Ph.D. Thesis, ENSAM ParisGoogle Scholar
  39. 39.
    Hagège B, Boisse P, Billoët J-L (2005) Euro J Comp Mech 14(6--7):767Google Scholar
  40. 40.
    Mcbride TM, Chen J (1997) Comp Sci Technol 57:345CrossRefGoogle Scholar
  41. 41.
    Mcguinness GB, O’Bradaigh CMO (1998) Comp Part A 29(1–2):115CrossRefGoogle Scholar
  42. 42.
    Numisheet ’93 (1993) In: Makinouchi A, Nakamachi E, Onate E, Wagoner, RH (eds) Numerical simulation of 3-D sheet metal forming processes—Verification of simulation with experiments, JapanGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Laboratoire de Mécanique des Contacts et des SolidesINSA de LyonVilleurbanne CedexFrance

Personalised recommendations