Journal of Materials Science

, Volume 41, Issue 20, pp 6639–6646 | Cite as

In-situ micro frequency dependent electric field sensors to verify model predictions of cure and aging

  • Justin Doo
  • Yuemei Zhang
  • Judd Compton
  • David Kranbuehl
  • Alfred C. Loos
Article

Abstract

Frequency dependent electric field measurements using in situ micro sensors, FDEMS, is a particularly useful technique for monitoring the changing state of a polymer in a composite (or in an adhesive joint or as a coating) during fabrication and aging during use in the field. Measurements can be made in the laboratory to monitor the polymerization process and to monitor durability and aging in an environmental chamber or other degradative environment. Equally important, the FDEMS in situ micro sensor monitoring technique can be used to monitor cure in production ovens and autoclaves on the plant floor as well as outside, for example, coatings on the surface of a ship in dry dock. Durability and aging can be monitored while the object is in use. Examples are a marine coating on a ship, the protective coating on the liner of an acid containing tank, a rocket propellant, an adhesive in a bond joint, or the polymer in a composite structure.

Keywords

Complex Permittivity Sensor Output Cure Cycle Resin Infusion Plant Floor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Thank you to the authors, Justin Doo, Yuemei Zhang and Alfred C. Loos. Support from NASA Langley, the Air Force Edwards California Laboratory, Boeing-McDonnell Douglas Aircraft Company and ICI’s Coatings Companies is gratefully appreciated.

References

  1. 1.
    Kranbuehl D (1997) In: Runt J, Fitzgerald J (eds) Dielectric spectroscopy of polymeric materials, Am Chem Soc., Washington, DC, p 303Google Scholar
  2. 2.
    Kranbuehl D (1991) Plastics, Rubber, Composite Process 16:213Google Scholar
  3. 3.
    Poncet S, Boiteaux G, Sautereau H, Seytre G, Rogozinski J, Kranbuehl D (1999) Polymer 40:6811CrossRefGoogle Scholar
  4. 4.
    Brown JM, Srinivasan S, Ward T, McGrath J, Loos AC, Hood D, Kranbuehl D (1996) Polymer 37:1691CrossRefGoogle Scholar
  5. 5.
    Kranbuehl D (2000) Processing of Composites, Hansor 137Google Scholar
  6. 6.
    Ciriscioli P, Springer G (1990) “Smart Autoclave Cure of Composite Technomic Publishing Co.Google Scholar
  7. 7.
    Kranbuehl D (2002) Encyclopedia of Smart Materials, John Wiley, p 456Google Scholar
  8. 8.
    Kranbuehl D (2000) Processing of Composites, Hansor 137Google Scholar
  9. 9.
    Kranbuehl D, Loos A (1999) Resin Transfer Molding for Aerospace Applications, Chapment Hall, p 412Google Scholar
  10. 10.
    Hasko G, Dexter H, Loos A, Kranbuehl D (1994) J Adv Mater 26:9Google Scholar
  11. 11.
    Hart S, Kranbuehl D, Hood D, Loos A, Koury J, Harvey J (1994) Int SAMPE Symp Proc 39(1):1641Google Scholar
  12. 12.
    Kranbuehl D, Hood D, Rogozinski J, Limburg W, Loos A, MacRae J, Hammond V (1995) Int SAMPE Symp. Proc 40(1)Google Scholar
  13. 13.
    Kranbuehl D, Hood D, Rogozinski J, Barksdale R, Loos A, MacRae D (1995) Proc ASME Int Mech Eng Congress H1041A 2:1017Google Scholar
  14. 14.
    Lepene BJ, Long TE, Meyer A, Kranbuehl D (2002) J Adhesion 78(4):297CrossRefGoogle Scholar
  15. 15.
    Kranbuehl D, Domanski A (2004) J Coat Technol, p 48Google Scholar
  16. 16.
    Kranbuehl D, Hood D, Rogozinski J, Meyer A, Neag M (1999) Prog Org Coat 881Google Scholar
  17. 17.
    Kranbuehl D, Hood D, Kellam C, Yang J (1996) In: Prouder T (ed) Am Chem Soc Sym Sev 648:96Google Scholar
  18. 18.
    Kranbuehl D, Rogozinski J, Meyer A, Hoipkemeier L, Nikolic N (2001) Provder T, Urban M (eds) Am Chem Soc, 790:141Google Scholar
  19. 19.
    Kranbuehl D, Newby-Mahler W, Hood D, Cuse S, Reifsnider K, Loos A (1997) In: Chang FK (ed) Structural Health Monitoring, Technomic, Penn, p 33Google Scholar
  20. 20.
    Kranbuehl D, Hood D, McCullough L, Eriksen M, Hov E (1994) Proc. ICC Cont on Inspection of Structural CompositesGoogle Scholar
  21. 21.
    Kranbuehl D, Hood D, Rogozinski J, Meyer A, Powell E, Higgins C, Davis C, Hoipkemeier L, Ambler C, Elko C, Olukeu N (2000) Recent Devel Durability Anal Composit, 413Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Justin Doo
    • 1
  • Yuemei Zhang
    • 1
  • Judd Compton
    • 1
  • David Kranbuehl
    • 1
  • Alfred C. Loos
    • 2
  1. 1.Chemistry and Applied Science DepartmentsCollege of William and MaryWilliamsburgUSA
  2. 2.Department of Chemical EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations