Skip to main content
Log in

A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1,100 °C

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Global thermal transformation of kaolinite–muscovite mixtures containing at most 25 mass % of muscovite was studied up to 1,100 °C. Quantitative and qualitative DTA analysis reveals a great intereaction between the two phylosilicates above 900 °C, which is characterized by an enhancement of spinodal demixion contribution during the structural reorganization of metakaolinite. The corresponding enthalpy variation are respectively −32 ± 1 kJ/mol and −15 ± 1 kJ/mol of kaolinite for pure kaolinite and for the mixture containing 15 mass % of muscovite. This interaction is mainly correlated with the diffusion of potassium ions from muscovite platelets into metakaolinite structure. The resulting consequence is an enhancement of mullite crystallization and grain growth at 1,050 °C (earlier than in the case of pure kaolinite mineral).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frost RL, Horvath E, Mako E, Kristof J, Redey A (2003) Thermochim Acta 408(1–2):103

    Article  CAS  Google Scholar 

  2. Horvath E, Frost RL, Mako E, Kristof J, Cseh T (2003) Thermochim Acta 404(1–2):227

    Article  CAS  Google Scholar 

  3. Brindley GW, Sharp JH, Patterson JH, Narahari BN (1967) The Am Mineral 52:201

    CAS  Google Scholar 

  4. Horvath I (1985) Thermochim Acta 85:193

    Article  CAS  Google Scholar 

  5. Dion P, Alcover JF, Bergaya F, Ortega A, Llewelly PL, Rouquerol F (1998) Clay Minerals 33:269

    Article  CAS  Google Scholar 

  6. Traoré K (2003) Frittage à basse température d’une argile kaolinitique du Burkina Faso. Transformations thermiques et réorganisations structurales. Thesis, University of Limoges, Limoges, p 190

  7. Horvath E, Kristof J, Frost RL, Jakab E, Mako E, Vagvoelgyi V (2005) J Colloid Interface Sci 239(1):132

    Article  CAS  Google Scholar 

  8. Bellotto M, Gualtieri A, Artioli G, Dark SM (1995) Phys Chem Minerals 22:207

    Article  CAS  Google Scholar 

  9. Bellotto M, Gualtieri A, Artioli G, Dark SM (1995) Phys Chem Minerals 22:215

    Article  Google Scholar 

  10. Drits VA, Tchoubar C (1990) X-ray diffraction by disordered lamellar structures. Springer-Verlag, Berlin, pp 233–303

  11. Artioli G, Bellotto M, Gualtieri A, Pavese A (1995) Clays Clay Miner 4:438

    Article  Google Scholar 

  12. Hanykyr V, Ederova J, Travnicek Z, Srank J (1985) Thermochim Acta 93:517

    Article  CAS  Google Scholar 

  13. Guggenheim S, Chang Y-H, Koster Van Groos AF (1987) The Am Mineral 72:537

    CAS  Google Scholar 

  14. Abbot R Jr (1994) The Can Mineral 32:87

    Google Scholar 

  15. Grim RE, Bradley WF, Brown G (1951) In: Brindley GW (ed) X-ray identification and crystal structures of clay minerals. Mineralogical Society, London, pp 138–172

  16. MacKenzie RC, Milne AA (1953) Mineral Mag 30:178

    CAS  Google Scholar 

  17. Udagawa S, Urabe K, Hasu H (1974) Jpn. Assoc Mineral Petrol Econ Geol 69:281

    Google Scholar 

  18. Mazzucato E, Artioli G, Gualtieri A (1999) Phys Chem Minerals 26:75

    Article  Google Scholar 

  19. Rocha J, Klinowski J (1990) Phys Chem Minerals 17:179

    Article  CAS  Google Scholar 

  20. Sanz J, Madani A, Serratosa JM, Moya JS, Aza S (1988) J Am Ceram Soc 71(10):C418

    Article  CAS  Google Scholar 

  21. Gualtieri A, Bellotto M (1998) Phys Chem Minerals 25:442

    Article  CAS  Google Scholar 

  22. Castelein O, Soulestin B, Bonnet JP, Blanchart P (2001) Ceram Inter 27(5):517

    Article  CAS  Google Scholar 

  23. Glass D (1954) The Am Mineral 39:193

    CAS  Google Scholar 

  24. Leonard AJ (1977) J Am Ceram Soc 60:37

    Article  CAS  Google Scholar 

  25. Okada K, Otsuka N, Ossaka J (1986) J Am Ceram Soc 69:C-251

    Article  CAS  Google Scholar 

  26. Sonuparlak B, Sarikaya M, Aksay IA (1987) J Am Ceram Soc 70:837

    Article  CAS  Google Scholar 

  27. Chakraborty AK, Ghosh DK (1978) J Am Ceram Soc 61:170

    Article  CAS  Google Scholar 

  28. Chakraborty AK (2003) Thermochim Acta 398(1–2):203

  29. Mackenzie KJD, Brown IWM, Cardile CM, Meinhold RH (1987) J Mater Sci 22:2645

    Article  CAS  Google Scholar 

  30. Pruett RJ, Webb HL (1993) Clays Clay Minerals 41:514

    Google Scholar 

  31. Papirer E, Eckhardt A, Muller F, Yvon J (1990) J Mater Sci 25:5109

    Article  CAS  Google Scholar 

  32. Richardson MJ, Charsley EL (1998) In: Brown ME (ed) Hand book of thermal analysis and calorimetry. Vol I: Principles and practice, [Édition] éd., vol 1 ([Date de l’original]; [Lieu de publication]: Elsevier Science BV, pp 547–575

  33. Rollet A-P, Bouaziz R (1972) L’analyse thermique. l’analyse des processus chimiques. T2. Gauthier-Villars, Paris, pp 454–457

  34. Jouenne CA (1990) Traité de céramiques et matériaux minéraux. éd Septima., Paris, pp 240–284

  35. Prodanovic D et al (1997) Appl Clay Sci 12:267

    Article  CAS  Google Scholar 

  36. Soro NS (2003) Influence des ions Fer sur les transformations thermiques de la kaolinite. Thesis., University of Limoges, 12 June 2003, Limoges, 158 pp

  37. Lecomte G, Blanchart P (accepted) J Mater Sci

  38. Takei T, Kameshima Y, Yamusori A, Okada K (2000) J Mater Res 15:186

    Article  CAS  Google Scholar 

  39. Lecomte GL, Pateyron B, Blanchart P (2004) Mater Res Bull 39:1469

    Google Scholar 

  40. Brindley GW, Udagawa S (1960) J Am Ceram Soc 43(2):59

    Article  CAS  Google Scholar 

  41. Brindley GW, Udagawa S (1960) J Am Ceram Soc 43(10):511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Pr. Yvon Jacques of LEM (Laboratoire d’Environnement et de Minéralurgie) laboratory of Nancy university for providing muscovite raw material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisèle Laure Lecomte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lecomte, G.L., Bonnet, J.P. & Blanchart, P. A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1,100 °C. J Mater Sci 42, 8745–8752 (2007). https://doi.org/10.1007/s10853-006-0192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0192-7

Keywords

Navigation