Journal of Materials Science

, Volume 41, Issue 20, pp 6693–6707 | Cite as

Interphase layer theory and application in the mechanics of composite materials

  • S. Lurie
  • P. Belov
  • D. Volkov-Bogorodsky
  • N. Tuchkova
Article

Abstract

In the present research work the interphase layer model is developed as a continuum media with local cohesion and adhesion effects. By the model it was found that these effects can help to understand/predict macro/micro mechanics of the material, if the boundary conditions and phase effects are modeled across the length scales. This paper describes the kinematics of continuum media, the formulation of governing equations (fundamentals) and the statement of boundary conditions for multi-scale modeling of the material. An approach and the model has been validated to predict some basic mechanical properties of a polymeric matrix reinforced with nanoscale particles/fibres/tubes (including carbon nanotubes) as a function of size and also dispersion of nanoparticles. Presented mathematical model of an interphase layer allows estimating an interaction around and nearby interfaces of nanoparticle and material matrix. Using these approaches the prediction methodology and modeling tools have been developed by numerical simulations and analysis of the mechanical properties across the length scales. Results of the work will provide a platform for the development and understanding of nanoparticle-reinforced materials that are light-weight, vibration and shock resistant.

Keywords

Effective Modulus Gradient Model Circular Inclusion Interphase Layer Virtual Action 

Notes

Acknowledgements

The work was supported by the European Office of Aerospace Research and Development, for the financial support of this work (Int. Grant N 2154p) and the Russian Foundation for Basic Research Grant N 06- 01- 00051. The authors would like to thank Dr. Gregory A Schoeppner, PhD, and Dr. Yarve Endel PhD from Air Force Research Laboratory AFRL for interest and assistance of the present research.

References

  1. 1.
    Aifantis E (1994) J Mech Behav Mater 5(3):335Google Scholar
  2. 2.
    Aifantis E (1999) Int J Fracture 95:299CrossRefGoogle Scholar
  3. 3.
    Bakhvalov N, Panasenko G (1989) Homogenization: averaging processes in periodic media. Kluwer, Dordrecht/Boston/ LondonGoogle Scholar
  4. 4.
    Bateman E, Erdeyi A (1955) Higher transcendental functions V 1–3. McGraw-Hill, New-YorkGoogle Scholar
  5. 5.
    Belov P, Lurie S (1998) Mechanics of solids. Allerton Press Mehanika tverdogo tela Inc 3:157Google Scholar
  6. 6.
    Bensoussan A, Lions J, Papanicolau G (1978) Asymptotic analysis for periodic structures. AmsterdamGoogle Scholar
  7. 7.
    Budiansky B, O’Connell RJ (1976) Int J Solids Structures 12:81CrossRefGoogle Scholar
  8. 8.
    Christensen RM (1979) Mechanics of composite materials. J. Wiley & Sons. IncGoogle Scholar
  9. 9.
    De Wit R (1973) J Res Nat Bureau Standards 77A(3):359Google Scholar
  10. 10.
    Eshelby J (1957) Proc Roy Soc LondGoogle Scholar
  11. 11.
    Eshelby JD (1961) Elastic inclusions and inhomogeneities. In: Sneddon IN, Hill R (eds) Progress in solid mechanics 2. North-Holland, Amsterdam, pp 89–140Google Scholar
  12. 12.
    Fleck N, Hutchinson J (1993). J Mech Phys Solids 41:1825CrossRefGoogle Scholar
  13. 13.
    Fleck N, Hutchinson J (1997) Adv Appl Mech 33:295CrossRefGoogle Scholar
  14. 14.
    Gao H, Huang Y, Nix W, Hutvhinson J (1999) J Mech Solids 47:1239CrossRefGoogle Scholar
  15. 15.
    Gutkin M (2000) Rev Adv Mater Sci 1(1):27Google Scholar
  16. 16.
    Lurie S, Belov P, Volkov-Bogorodsky D, Tuchkova N (2003a) Int J Comp Mater Scs (3–4):529CrossRefGoogle Scholar
  17. 17.
    Lurie S, Belov P, Volkov-Bogorodsky D (2003b) Multiscale Modeling in the mechanics of materials: cohesion, interfacial interactions, Nanoparticles and Defects. In: Wendland LW (ed), Analysis and simulation of multifield problems, vol. 12 Springer, 2003; pp 101–110Google Scholar
  18. 18.
    Lurie S, Belov P (2000) Monograph -Scientific publication of Computing Centre RASGoogle Scholar
  19. 19.
    Lurie S, Belov P, Tuchkova N (2005) Int J Comput Mater Sci A 36(2):145Google Scholar
  20. 20.
    Lurie S, Belov P (2005) Proceeding of the Conference “Advance problems of the mechanics of heterogeneous media”, Inst. of Appl. Mechanics, of Russian Acad. of Scs., Moscow, pp 235–268Google Scholar
  21. 21.
    Lurie S, Hui D, Zubov V, Kireitseu M, Bochkareva L, Williams R, Tomlinson G (2006) International Journal of Computational Science and Engineering (IJCSE) (accepted)Google Scholar
  22. 22.
    Lurie S, Belov P, Kalamkarov A (2005b) Int J Solid Structures 43(1):91CrossRefGoogle Scholar
  23. 23.
    Mindlin R (1964) Arch Ration Mech Anal 1:51Google Scholar
  24. 24.
    Mori T, Tanaka K (1973) Acta Metallurgica 21:571CrossRefGoogle Scholar
  25. 25.
    Mura T (1982) Micromechanics of defects in solids. Martinus Nijhoff PublishersGoogle Scholar
  26. 26.
    Nemat-Nasser S, Iwakuma T, Hejazi M (1982) Mech Mater 1(3):239CrossRefGoogle Scholar
  27. 27.
    Novazki V (1975) Theory of elasticity. Moscow, Nauka publishersGoogle Scholar
  28. 28.
    Nunan K, Keller J (1984) J Mech Phys Solids 32(4):259CrossRefGoogle Scholar
  29. 29.
    Obraztsov I, Lurie S et al (2000) On the new cohesion field model in solid’, News High School, North – Caucasian Region, Vol. 3,pp 110–118Google Scholar
  30. 30.
    Odegard G, Gates T (2002) In: Proceedings of Annual Conference on Experimental and Applied Mechanics, June, Milwaukee, WIGoogle Scholar
  31. 31.
    Odegard G, Gates T, Nicolson L, Wise K (2002) NASA TM-2002–211454Google Scholar
  32. 32.
    Riccardi A, Montheillet F (1999) Acta Mechanica 133:39CrossRefGoogle Scholar
  33. 33.
    Sangini AS Lu W (1987) J Mech Phys Solids 35(1):1CrossRefGoogle Scholar
  34. 34.
    Thostenson E, Ren Z, Chou T (2001) Composites Sci Technol 61:1899CrossRefGoogle Scholar
  35. 35.
    Tibbetts G, McHugh J (1999) J Mater Res 14:2871Google Scholar
  36. 36.
    Tucker I, Liang E (1999) Composites Sci Technol 59:655CrossRefGoogle Scholar
  37. 37.
    Vlasov V (1987) Boundary problems in domains with curvilinear boundary. M.: CCAS. (In Russian)Google Scholar
  38. 38.
    Volkov-Bogorodsky DB (2000) In: Proceedings of the conference “Composite materials”. M.: IAM RAN, P. 44–56 (In Russian)Google Scholar
  39. 39.
    Volkov-Bogorodsky DB (2005) Dynamic and technological problems of structural mechanics and continuous media”. Proceedings of the XI International Symposium. (Jaropolez, 14–18 February 2005). M.: MAI, P. 17–22 (In Russian)Google Scholar
  40. 40.
    Wakashima K, Otsuka M, Umekawa S (1974). J Comp Mater 8:391Google Scholar
  41. 41.
    Zhang P, Huang Y, Geubelle P, Klein P, Hwang K (2002) Int J Solids Structures 39:3893CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. Lurie
    • 1
    • 2
  • P. Belov
    • 2
  • D. Volkov-Bogorodsky
    • 2
  • N. Tuchkova
    • 1
  1. 1.Dorodnicyn Computer Centre of the Russian Academy of SciencesMoscow GSP-1Russia
  2. 2.Institute of Applied Mechanics Russian Academy of SciensesMoscowRussia

Personalised recommendations