Abstract
With the availability of resolution-boosting and delocalization-minimizing techniques, aberration-corrected high-resolution transmission electron microscopy is currently enjoying great popularity with respect to the atomic scale imaging of lattice imperfections in crystalline solid-state materials. In the present review, the most striking practical benefits arising from the synergetic combination of two sophisticated state-of-the-art techniques, i.e. spherical-aberration-corrected imaging as well as the numerical restoration of the exit-plane wavefunction from a focal series of high-resolution micrographs, are illustrated by highlighting their combined use for the atomic-scale characterization of misfit dislocations, stacking faults and grain boundaries in common semiconductor materials and metastable metal phases. For these purposes recent progress is reviewed in the atomic-scale characterization of (i) Lomer-type misfit dislocations at InxGa1-xAs/GaAs heterointerfaces and extrinsic stacking fault ribbons in GaAs together with the associated lattice displacements [Tillmann et al. (2004) Microsc Microanal 10:185], (ii) the core structure of chromium implantation-induced Frank partial dislocations in GaN [Tillmann et al. (2005) Microsc Microanal 11:534] as well as (iii) tilt boundaries between β-phase Ta crystallites in thin metallization layers [Tillmann et al. (2006) Phil Mag, in press]. In addition, practical advantages are demonstrated of the retrieval of the exit-plane wavefunction not only for the measurement and subsequent elimination of residual lens aberrations still present in aberration-corrected microscopy, but also for the proper alignment of specimens during operation of the electron microscope.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Tillmann K, Thust A, Urban K (2004) Microsc Microanal 10:185
Tillmann K, Houben L, Thust A (2006) Phil Mag (in press)
Tillmann K, Thust A, Gerber A, Weides MP, Urban K (2005) Microsc Microanal 11:534
Kisielowski C, Hetherington CJD, Wang YC, Kilaas R, O’Keefe MA, Thust A (2001) Ultramicroscopy 89:243
O’Keefe MA, Nelson EC, Wang EC, Thust A (2001) Phil Mag B 71:1861
Freitag B, Kujawa S, Mul PM, Ringnalda J, Tiemeijer PC (2005) Ultramicroscopy 102:209
Jia CL, Lentzen M, Urban K (2003) Science 299:870
Jia CL, Lentzen M, Urban K (2004) Microsc Microanal 10:174
Hutchison JL, Titchmarsh JM, Cockayne DJH, Doole RC, Hetherington CJD, Kirkand AI, Sawada H (2005) Ultramicroscopy 103:7
Lichte H (1991) Ultramicroscopy 38:13
Coene W, Jansen AJEM (1992) Scan Microsc Suppl 6:379
Rose H (1990) Optik 85:19
Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K (1998) Nature 392:768
Kujawa S, Freitag B, Hubert D (2005) Microsc Today 13(4):16
Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) Ultramicroscopy 92:233
Coene WMJ, Janssen G, Op de Beeck M, van Dyck D (1992) Phys Rev Lett 69:3743
Coene WMJ, Thust A, Op de Beeck M, van Dyck D (1996) Ultramicroscopy 64:109
Thust A, Coene WMJ, Op de Beeck M, van Dyck D (1996) Ultramicroscopy 64:211
Thust A, Overwijk MHF, Coene WMJ, Lentzen M (1996) Ultramicroscopy 64:249
Thust A, Jia CL, Urban K (2002) In: Cross R (ed) Proceedings ICEM-15, vol 1. Microscopy Society of Southern Africa, Durban, pp 167–168
Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York (U.S.) and London (U.K.)
Lentzen M (2004) Ultramicroscopy 99:211
O’Keefe MA, Hetherington CJD, Wang YC, Nelson EC, Turner JH, Kisielowski C, Malm JO, Mueller R, Ringnalda J, Pan M, Thust A (2001) Ultramicroscopy 89:215
Chang LY, Chen FR, Kirkland AI, Kai JJ (2003) J Electron Microsc 52:359
Houben L, Thust A, Urban K (2006) Ultramicroscopy 106:200
Uhlemann S, Haider M (1998) Ultramicroscopy 72:109
Zemlin F, Weiss K, Schiske P, Kunath W, Herrmann KH (1978) Ultramicroscopy 3:49
Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York (U.S.)
Amelinckx S (1979) In: Nabarro FRN (ed) Dislocations in solids, vol 2. North-Holland, Amsterdam, pp 67–460
Nunes RW, Bennetto J, Vanderbilt D (1998) Phys Rev B 58:12563
Justo JF, Nunes RW, Assali LVC (2002) J Phys: Condens Matter 14:12749
Beckman SP, Xu X, Specht P, Weber ER, Kisielowski C, Chrzan DC (2002) J Phys: Condens Matter 14:12673
Kolar HR, Spence JCH, Alexander H (1996) Phys Rev Lett 77:4031
Xu X, Beckmann SP, Specht P, Weber ER, Chrzan DC, Ernie RP, Arslan I, Browning N, Bleloch A, Kisielowski C (2005) Phys Rev Lett 95:145501
Hÿtch MJ, Snoeck E, Kilaas R (1998) Ultramicroscopy 74:131
Gomez AM, Hirsch PB (1978) Phil Mag A 38:733
Lomer WM (1951) Phil Mag 42:1327
Hornstra J (1958) J Phys Chem Solids 5:129
Bourret A, Dessaux J, Renault R (1982) Phil Mag A 45:1
Vilà A, Cornet A, Morante JR, Ruterna P, Loubradou M, Bonnet R, González Y, González L (1995) Phil Mag A 75:85
Lopatin S, Pennycook SJ, Narayan J, Duscher G (2002) Appl Phys Lett 81:2728
Stirman JN, Crozier PA, Smith DJ, Phillipp F, Brill G, Sivananthan S (2004) Appl Phys Lett 84:2530
Ohno H (1998) Science 281:951
Kirchner V, Heinke H, Birkle U, Einfeld S, Selke D, Ryder PL (1998) Phys Rev B 58:15749
Guzenko VA, Thillosen N, Dahmen A, Calarco R, Schäpers Th, Houben L, Luysberg M, Schineller B, Heuken M, Kaluza A (2004) J Appl Phys 96:5663
Westwood WD, Waterhouse N, Wilcox PS (1975) Tantalum thin films. Academic Press, London (U.K.)
Hieber K, Mayer NM (1982) Thin Solid Films 90:43
Read MH, Altman C (1965) Appl Phys Lett 7:51
Moseley PT, Seabrook CJ (1973) Acta Cryst B29:1170
Kwon KW, Lee HJ, Sinclair R (1999) Appl Phys Lett 75:935
Laurila T, Zeng K, Kivilahti K, Molarius J, Suni I (2000) J Appl Phys 88:3377
Hübner R, Hecker M, Mattern N, Hoffmann V, Wetzig K, Wenger C, Engelmann HJ, Wenzel C, Zschech E, Bartha JW (2003) Thin Solid Films 437:248
Gupta D (1995) Mater Chem Phys 41:199
Klaver P, Thijsse B (2002) Thin Solid Films 413:110
Hÿtch MJ, Stobbs WM (1994) Ultramicroscopy 53:191
Boothroyd CB (1998) J Microsc 190:99
Venables JA, Spiller GDT, Hanbücken M (1984) Rep Prog Phys 47:399
Abelmann L, Lodder C (1997) Thin Solid Films 305:1
Acknowledgements
The authors are grateful to Arno Förster, Vitaly Guzenko, Martin Weides and Doris Meertens for making available the samples investigated in this compilation and for painstaking specimen preparation work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tillmann, K., Houben, L., Thust, A. et al. Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution. J Mater Sci 41, 4420–4433 (2006). https://doi.org/10.1007/s10853-006-0154-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-006-0154-0


