Skip to main content
Log in

Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the availability of resolution-boosting and delocalization-minimizing techniques, aberration-corrected high-resolution transmission electron microscopy is currently enjoying great popularity with respect to the atomic scale imaging of lattice imperfections in crystalline solid-state materials. In the present review, the most striking practical benefits arising from the synergetic combination of two sophisticated state-of-the-art techniques, i.e. spherical-aberration-corrected imaging as well as the numerical restoration of the exit-plane wavefunction from a focal series of high-resolution micrographs, are illustrated by highlighting their combined use for the atomic-scale characterization of misfit dislocations, stacking faults and grain boundaries in common semiconductor materials and metastable metal phases. For these purposes recent progress is reviewed in the atomic-scale characterization of (i) Lomer-type misfit dislocations at InxGa1-xAs/GaAs heterointerfaces and extrinsic stacking fault ribbons in GaAs together with the associated lattice displacements [Tillmann et al. (2004) Microsc Microanal 10:185], (ii) the core structure of chromium implantation-induced Frank partial dislocations in GaN [Tillmann et al. (2005) Microsc Microanal 11:534] as well as (iii) tilt boundaries between β-phase Ta crystallites in thin metallization layers [Tillmann et al. (2006) Phil Mag, in press]. In addition, practical advantages are demonstrated of the retrieval of the exit-plane wavefunction not only for the measurement and subsequent elimination of residual lens aberrations still present in aberration-corrected microscopy, but also for the proper alignment of specimens during operation of the electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Tillmann K, Thust A, Urban K (2004) Microsc Microanal 10:185

    Article  CAS  Google Scholar 

  2. Tillmann K, Houben L, Thust A (2006) Phil Mag (in press)

  3. Tillmann K, Thust A, Gerber A, Weides MP, Urban K (2005) Microsc Microanal 11:534

    Article  CAS  Google Scholar 

  4. Kisielowski C, Hetherington CJD, Wang YC, Kilaas R, O’Keefe MA, Thust A (2001) Ultramicroscopy 89:243

    Article  CAS  Google Scholar 

  5. O’Keefe MA, Nelson EC, Wang EC, Thust A (2001) Phil Mag B 71:1861

    Article  Google Scholar 

  6. Freitag B, Kujawa S, Mul PM, Ringnalda J, Tiemeijer PC (2005) Ultramicroscopy 102:209

    Article  CAS  Google Scholar 

  7. Jia CL, Lentzen M, Urban K (2003) Science 299:870

    Article  CAS  Google Scholar 

  8. Jia CL, Lentzen M, Urban K (2004) Microsc Microanal 10:174

    Article  CAS  Google Scholar 

  9. Hutchison JL, Titchmarsh JM, Cockayne DJH, Doole RC, Hetherington CJD, Kirkand AI, Sawada H (2005) Ultramicroscopy 103:7

    Article  CAS  Google Scholar 

  10. Lichte H (1991) Ultramicroscopy 38:13

    Article  Google Scholar 

  11. Coene W, Jansen AJEM (1992) Scan Microsc Suppl 6:379

    Google Scholar 

  12. Rose H (1990) Optik 85:19

    Google Scholar 

  13. Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K (1998) Nature 392:768

    Article  CAS  Google Scholar 

  14. Kujawa S, Freitag B, Hubert D (2005) Microsc Today 13(4):16

    Article  Google Scholar 

  15. Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) Ultramicroscopy 92:233

    Article  CAS  Google Scholar 

  16. Coene WMJ, Janssen G, Op de Beeck M, van Dyck D (1992) Phys Rev Lett 69:3743

    Article  CAS  Google Scholar 

  17. Coene WMJ, Thust A, Op de Beeck M, van Dyck D (1996) Ultramicroscopy 64:109

    Article  CAS  Google Scholar 

  18. Thust A, Coene WMJ, Op de Beeck M, van Dyck D (1996) Ultramicroscopy 64:211

    Article  CAS  Google Scholar 

  19. Thust A, Overwijk MHF, Coene WMJ, Lentzen M (1996) Ultramicroscopy 64:249

    Article  CAS  Google Scholar 

  20. Thust A, Jia CL, Urban K (2002) In: Cross R (ed) Proceedings ICEM-15, vol 1. Microscopy Society of Southern Africa, Durban, pp 167–168

  21. Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York (U.S.) and London (U.K.)

    Book  Google Scholar 

  22. Lentzen M (2004) Ultramicroscopy 99:211

    Article  CAS  Google Scholar 

  23. O’Keefe MA, Hetherington CJD, Wang YC, Nelson EC, Turner JH, Kisielowski C, Malm JO, Mueller R, Ringnalda J, Pan M, Thust A (2001) Ultramicroscopy 89:215

    Article  Google Scholar 

  24. Chang LY, Chen FR, Kirkland AI, Kai JJ (2003) J Electron Microsc 52:359

    Article  Google Scholar 

  25. Houben L, Thust A, Urban K (2006) Ultramicroscopy 106:200

    Article  CAS  Google Scholar 

  26. Uhlemann S, Haider M (1998) Ultramicroscopy 72:109

    Article  CAS  Google Scholar 

  27. Zemlin F, Weiss K, Schiske P, Kunath W, Herrmann KH (1978) Ultramicroscopy 3:49

    Article  Google Scholar 

  28. Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York (U.S.)

    Google Scholar 

  29. Amelinckx S (1979) In: Nabarro FRN (ed) Dislocations in solids, vol 2. North-Holland, Amsterdam, pp 67–460

  30. Nunes RW, Bennetto J, Vanderbilt D (1998) Phys Rev B 58:12563

    Article  CAS  Google Scholar 

  31. Justo JF, Nunes RW, Assali LVC (2002) J Phys: Condens Matter 14:12749

    CAS  Google Scholar 

  32. Beckman SP, Xu X, Specht P, Weber ER, Kisielowski C, Chrzan DC (2002) J Phys: Condens Matter 14:12673

    CAS  Google Scholar 

  33. Kolar HR, Spence JCH, Alexander H (1996) Phys Rev Lett 77:4031

    Article  CAS  Google Scholar 

  34. Xu X, Beckmann SP, Specht P, Weber ER, Chrzan DC, Ernie RP, Arslan I, Browning N, Bleloch A, Kisielowski C (2005) Phys Rev Lett 95:145501

    Article  CAS  Google Scholar 

  35. Hÿtch MJ, Snoeck E, Kilaas R (1998) Ultramicroscopy 74:131

    Article  Google Scholar 

  36. Gomez AM, Hirsch PB (1978) Phil Mag A 38:733

    Article  CAS  Google Scholar 

  37. Lomer WM (1951) Phil Mag 42:1327

    Article  CAS  Google Scholar 

  38. Hornstra J (1958) J Phys Chem Solids 5:129

    Article  CAS  Google Scholar 

  39. Bourret A, Dessaux J, Renault R (1982) Phil Mag A 45:1

    Article  CAS  Google Scholar 

  40. Vilà A, Cornet A, Morante JR, Ruterna P, Loubradou M, Bonnet R, González Y, González L (1995) Phil Mag A 75:85

    Article  Google Scholar 

  41. Lopatin S, Pennycook SJ, Narayan J, Duscher G (2002) Appl Phys Lett 81:2728

    Article  CAS  Google Scholar 

  42. Stirman JN, Crozier PA, Smith DJ, Phillipp F, Brill G, Sivananthan S (2004) Appl Phys Lett 84:2530

    Article  CAS  Google Scholar 

  43. Ohno H (1998) Science 281:951

    Article  CAS  Google Scholar 

  44. Kirchner V, Heinke H, Birkle U, Einfeld S, Selke D, Ryder PL (1998) Phys Rev B 58:15749

    Article  CAS  Google Scholar 

  45. Guzenko VA, Thillosen N, Dahmen A, Calarco R, Schäpers Th, Houben L, Luysberg M, Schineller B, Heuken M, Kaluza A (2004) J Appl Phys 96:5663

    Article  CAS  Google Scholar 

  46. Westwood WD, Waterhouse N, Wilcox PS (1975) Tantalum thin films. Academic Press, London (U.K.)

    Google Scholar 

  47. Hieber K, Mayer NM (1982) Thin Solid Films 90:43

    Article  CAS  Google Scholar 

  48. Read MH, Altman C (1965) Appl Phys Lett 7:51

    Article  CAS  Google Scholar 

  49. Moseley PT, Seabrook CJ (1973) Acta Cryst B29:1170

    Article  Google Scholar 

  50. Kwon KW, Lee HJ, Sinclair R (1999) Appl Phys Lett 75:935

    Article  CAS  Google Scholar 

  51. Laurila T, Zeng K, Kivilahti K, Molarius J, Suni I (2000) J Appl Phys 88:3377

    Article  CAS  Google Scholar 

  52. Hübner R, Hecker M, Mattern N, Hoffmann V, Wetzig K, Wenger C, Engelmann HJ, Wenzel C, Zschech E, Bartha JW (2003) Thin Solid Films 437:248

    Article  Google Scholar 

  53. Gupta D (1995) Mater Chem Phys 41:199

    Article  CAS  Google Scholar 

  54. Klaver P, Thijsse B (2002) Thin Solid Films 413:110

    Article  CAS  Google Scholar 

  55. Hÿtch MJ, Stobbs WM (1994) Ultramicroscopy 53:191

    Article  Google Scholar 

  56. Boothroyd CB (1998) J Microsc 190:99

    Article  CAS  Google Scholar 

  57. Venables JA, Spiller GDT, Hanbücken M (1984) Rep Prog Phys 47:399

    Article  Google Scholar 

  58. Abelmann L, Lodder C (1997) Thin Solid Films 305:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Arno Förster, Vitaly Guzenko, Martin Weides and Doris Meertens for making available the samples investigated in this compilation and for painstaking specimen preparation work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Tillmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tillmann, K., Houben, L., Thust, A. et al. Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution. J Mater Sci 41, 4420–4433 (2006). https://doi.org/10.1007/s10853-006-0154-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0154-0

Keywords