Journal of Materials Science

, Volume 41, Issue 17, pp 5767–5770 | Cite as

Effects of reactive compatibilization on the performance of nano-silica filled polypropylene composites

  • Hong Jun Zhou
  • Min Zhi RongEmail author
  • Ming Qiu Zhang
  • Klaus Friedrich

Nano-sized inorganic particles have been widely used in recent years as fillers in polymers to improve their toughness [1, 2] and tribological performance [3, 4]. However, homogeneous dispersion of the nanoparticles in polymeric matrices is very difficult because the particles with high surface energy are easy to agglomerate. In addition, the hydrophilic nanoparticles and the hydrophobic polymers are not compatible in nature, which has to result in poor interfacial bonding. All of these deficiencies obstruct effective utilization of inorganic nanoparticles in polymer composites. To lower surface energy of inorganic nanoparticles, surface pre-treatment that aims at improving dispersibility of the powders in polymers and tailoring the interfacial interaction is highly desired. Many approaches have been proposed so far, including coupling agents [5, 6] and grafting modification [7, 8, 9, 10], whereas most of them did not consider the possibility of reactive compatibilization. As a...


Impact Strength Graft Polymerization Butyl Acrylate SiO2 Nanoparticles Glycidyl Methacrylate 



The authors are grateful to the support of the Deutsche Forschungsgemeinschaft (DFG FR675/40-4) for the cooperation between the German and Chinese institutes on the topic of nanocomposites. Further thanks are due to the National Natural Science Foundation of China (Grants: 50273047), the Natural Science Foundation of Guangdong, China (Grants: 20003038 & 2003C50107), and the Science and Technology Department of Guangzhou (Grant: 2004Z3-D2061).


  1. 1.
    Zhang MQ, Rong MZ, Friedrich K (2003) In: Handbook of organic-inorganic hybrid materials and nanocomposites, vol 2: nanocomposites. American Science Publishers, California, p 113Google Scholar
  2. 2.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Polymer 42:167CrossRefGoogle Scholar
  3. 3.
    Rong MZ, Zhang MQ, Shi G, Ji QL, Wetzel B, Friedrich K (2003) Tribol Int 36:697CrossRefGoogle Scholar
  4. 4.
    Zhang MQ, Rong MZ, Yu SL, Wetzel B, Friedrich K (2002) Wear 253:1086CrossRefGoogle Scholar
  5. 5.
    Walter R, Friedrich K, Privalko V, Savadori A (1997) J Adhesion 64:87CrossRefGoogle Scholar
  6. 6.
    Wang G, Chen XY, Huang R, Zhang L (2002) J Mater Sci Lett 21:985CrossRefGoogle Scholar
  7. 7.
    Hayashi S, Takeuchi Y, Eguchi M, Iida T, Tsubokawa N (1999) J Appl Polym Sci 71:1491CrossRefGoogle Scholar
  8. 8.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2000) J Mater Sci Lett 19:1159CrossRefGoogle Scholar
  9. 9.
    Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Friedrich K (2001) Polymer 42:3301CrossRefGoogle Scholar
  10. 10.
    Zhang MQ, Rong MZ, Zeng HM, Schmitt S, Wetzel B, Friedrich K (2001) J Appl Polym Sci 80:2218CrossRefGoogle Scholar
  11. 11.
    Wu CL, Zhang MQ, Rong MZ, Friedrich K (2002) Compos Sci Technol 62:1327CrossRefGoogle Scholar
  12. 12.
    Zhang MQ, Rong MZ, Pan SL, Friedrich K (2002) Adv Compos Lett 11:293Google Scholar
  13. 13.
    Koning C, Van DM, Pagnoulle C, Jerome R (1998) Prog Polym Sci 23:707CrossRefGoogle Scholar
  14. 14.
    Zhou HJ, Rong MZ, Zhang MQ, Lehmann B, Friedrich K (2005) Polym J 37:677CrossRefGoogle Scholar
  15. 15.
    Lu QW, Macosko CW (2004) Polymer 45:1981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hong Jun Zhou
    • 1
    • 2
  • Min Zhi Rong
    • 2
    Email author
  • Ming Qiu Zhang
    • 2
  • Klaus Friedrich
    • 3
  1. 1.Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationZhongshan UniversityGuangzhouP. R. China
  2. 2.Materials Science InstituteZhongshan UniversityGuangzhouP. R. China
  3. 3.Institute for Composite Materials (IVW)University of KaiserslauternKaiserslauternGermany

Personalised recommendations