Journal of Materials Science

, Volume 41, Issue 17, pp 5723–5725 | Cite as

Characterization of chemically deposited nanocrystalline PbS thin films

  • R. S. Patil
  • H. M. Pathan
  • T. P. GujarEmail author
  • C. D. Lokhande

Nanocrystalline materials are novel materials, which are not only scientifically interesting but also held great potential for various applications. Their properties are different and often superior to those of conventional coarse-grained materials and also amorphous alloys of the same configuration. Nanocrystalline materials exhibit increased strength, hardness, enhance diffusivity, improved quality, roughness, reduced elastic modulus, higher thermal expansion coefficient, lower thermal conductivity and superior soft magnetic properties to the conventional coarse-grained materials [1].

Recently, lead sulfide (PbS) nanocrystalline thin films have received considerable attention because of their actual and potential application in optoelectronic devices. In solar energy research PbS thin films have been investigated for photo thermal conversion application [2, 3, 4]. The PbS thin films have been prepared using various chemical methods including electrodeposition [5, 6, 7], SILAR [8, 9, 10...


Electrical Resistivity Lead Acetate Chemical Bath Deposition Lead Sulfide Chemical Bath Deposition Method 


  1. 1.
    Suryanarayana C (1994) Bull Mater Sci 17:307CrossRefGoogle Scholar
  2. 2.
    Meldrum FC, Flath J, Knoll W (1999) Thin Solid Films 348:188CrossRefGoogle Scholar
  3. 3.
    Nair PK, Nair MTS, Fernandes A, Ocampo M (1989) J Phys D: Appl Phys:22:829CrossRefGoogle Scholar
  4. 4.
    Reddy GB, Pandya DK, Chopra KL (1987) Sol Energy Mater 15:153CrossRefGoogle Scholar
  5. 5.
    Takahashi M, Ohshima Y, Nagata K, Furuta S, (1993) J Electroanal Chem 359:281CrossRefGoogle Scholar
  6. 6.
    Sharon M, Ramaiah KS, Kumar M, Neumann-sppallart M, Levy-clement C (1997) J Electroanal Chem 436:49CrossRefGoogle Scholar
  7. 7.
    Saloniemi H, Ritala M, Leskela M, Lappalainen R (1999) J Electrochem Soc 146:2522CrossRefGoogle Scholar
  8. 8.
    Kanniainen T, Lindroos S, Ihanus J, Leskela M (1996) J Mater Chem 6:161CrossRefGoogle Scholar
  9. 9.
    Kanniainen T, Lindroos S, Resch R, Leskela M, Friedbacher G, Grasserbauer M (2000) Mater Res Bull 35:1045CrossRefGoogle Scholar
  10. 10.
    Puiso J, Lindroos S, Tamulevicius S, Leskela M, Snitka V, (2003) Thin Solid Films428:223CrossRefGoogle Scholar
  11. 11.
    Thangaraju B, Kaliannan P (2000) Semicond Sci Tech 15:849CrossRefGoogle Scholar
  12. 12.
    Gadave KM, Jodgudri SA, Lokhande CD (1994) Thin Solid Films 245:7CrossRefGoogle Scholar
  13. 13.
    Bhushan S, Mukharjee M, Bose P (2002) J Mater Sci: Mater Electron 13:581Google Scholar
  14. 14.
    Lokhande CD (1991) Mater Chem Phys 27:1CrossRefGoogle Scholar
  15. 15.
    Mane RS, Sankapal BR, Lokhande CD (1999) Mater Chem Phys 60:196CrossRefGoogle Scholar
  16. 16.
    Kale SS, Lokhande CD (1999) Mater Chem Phys 59:242CrossRefGoogle Scholar
  17. 17.
    Kale SS, Lokhande CD (2000) Mater Chem Phys 62:103CrossRefGoogle Scholar
  18. 18.
    Puiso J, Tamulevicius S, Laukaitis G, Lindroos S, Leskela M, Snitka V (2002) Thin Solid Films 403–404:457CrossRefGoogle Scholar
  19. 19.
    Joshi RK, Kanjilal A, Sehgal HK (2003) Appl Surf Sci 221:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • R. S. Patil
    • 1
  • H. M. Pathan
    • 2
  • T. P. Gujar
    • 2
    Email author
  • C. D. Lokhande
    • 2
  1. 1.PSGVPM’S ASC College ShahadaNandurbarIndia
  2. 2.Thin Film Physics Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations