Skip to main content

Advertisement

Log in

In situ deformation of silicon nanospheres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a natural response to the ongoing trend of device miniaturization, many effects of scaling on the properties of materials have become well documented. However, the mechanical properties of individual nanoparticles are not well understood and the direct observation of nanoparticle deformation has only recently been achieved. This work investigates the mechanical behavior of silicon nanospheres in the transmission electron microscope (TEM) using an in situ indentation sample holder. In situ TEM studies provide information which is not accessible by more traditional means, including particle orientation prior to deformation and the type and location of any preexisting defects. In this study, isolated nanoparticles were located and compressed between a diamond tip and a sapphire substrate. Here, the deformation behavior of individual particles is investigated and analogous strain fields between small particles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Tanner DM, Smith NF, Irwin LW, Eaton WP, Helgesen KS, Clement JJ, Miller WM, Walraven JA, Peterson KA, Tangyunyong P, Dugger MT and Miller SL Tech. Report No. SAND2000–0091 (Sandia National Laboratory, 2000)

  2. Arzt E (1998) Acta Mater 46:5611

    Article  CAS  Google Scholar 

  3. Brenner SS (1956) J Appl Phys 27:1484

    Article  CAS  Google Scholar 

  4. Brenner SS (1957) J Appl Phys 28:1023

    Article  CAS  Google Scholar 

  5. Gryanznov VG, Polonsky IA, Romanov AE, Trusov LI (1991) Phys Rev B 44:42

    Article  Google Scholar 

  6. Gryanznov VG, Trusov LI (1993) Prog Mater Sci 37:289

    Article  Google Scholar 

  7. Veprek S (1997) Thin Solid Films 297:145

    Article  CAS  Google Scholar 

  8. Veprek S, Mukherjee S, Mannling HD, HE JL (2003) Mater Sci Eng A 340:292

    Article  Google Scholar 

  9. Mook WM, Jungk JM, Cordill MJ, Moody NR, Sun Y, Xia Y, Gerberich WW (2004) Z Metallkd 95:416

    Article  CAS  Google Scholar 

  10. Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein JVR, Mcmurry PH, Girshick SL (2003) J Mech Phys Solids 51: 979

    Article  CAS  Google Scholar 

  11. Spence JCH (1988) Ultramicroscopy 25:165

    Article  Google Scholar 

  12. Ohnishi H, Kondo Y, Takayanagi K (1998) Surf Sci 415:L1061

    Article  CAS  Google Scholar 

  13. Kizuka T (1998) Phys Rev Lett 81:4448

    Article  CAS  Google Scholar 

  14. Kizuka T, Yamada K, Deguchi S, Naruse M, Tanaka N (1997) Phys Rev B Condens Matter Mater Phys 55:R7398

    Article  CAS  Google Scholar 

  15. Cummings J, Zettl A (2000) Science 289:602

    Article  Google Scholar 

  16. Larsson MW, Wallenberg LR, Persson AI, Samuelson L (2004) Microsc Microanal 10:41

    Article  CAS  Google Scholar 

  17. Erts D, Lohmus A, Lohmus R, Olin H (2001) Appl Phys A: Mater Sci Process 72:S71

    Article  Google Scholar 

  18. Wall MA, Barber TW, Dahmen DU (1995) Paper presented at the 53rd Annual MSA Meeting, Kansas City, Missouri

  19. Wall MA, Dahmen U (1997) Microsc Microanal 3(Suppl. 3):593

    Google Scholar 

  20. Stach EA, Freeman T, Minor AM, Owen DK, Cumings J, Wall MA, Chraska T, Hull R, Morris JW, Zettl A, Dahmen U (2001) Microsc Microanal 7:507

    CAS  Google Scholar 

  21. Minor AM, Morris JW, Stach EA (2001) Appl Phys Lett 79:1625

    Article  CAS  Google Scholar 

  22. Minor AM, Lilleodden ET, Stach EA, Morris JW (2002) J Electron Mater 31:958

    Article  CAS  Google Scholar 

  23. Rao NP, Lee HJ, Kelkar M, Hansen DJ, Heberlein JVR, Mcmurry PH, Girshick SL (1997) NanoStruct Mater 9:129

    Article  CAS  Google Scholar 

  24. Rao NP, Tymiak N, Blum J, Neuman A, Lee HS, Girshick SL, Mcmurry PH, Heberlein J (1998) J Aerosol Sci 29:707

    Article  CAS  Google Scholar 

  25. Perrey CR, Lentzen M, Carter CB (2003) Microsc Microanal 9:394

    Google Scholar 

  26. Perrey CR, Carter CB, Bentley J, Lentzen M (2003) Microsc Microanal 9:412

    Google Scholar 

  27. Perrey CR, Carter CB, Lentzen M (2003) Microsc Microanal 9:958

    Google Scholar 

  28. Muhlstein CL, Brown SB, Ritchie RO (2001) J MEMS 10:593

    Article  Google Scholar 

  29. Easterling KE, Thölén AR (1972) Acta Metall 20:1001

    Article  CAS  Google Scholar 

  30. Thölén AR (1990) Phase Transitions 24–26:375

    Article  Google Scholar 

  31. Thölén AR, Yao Y (2003) J Colloid Interface Sci 268:362

    Article  Google Scholar 

  32. Thölén AR (2006) J Mater Sci (This issue)

  33. Johnson KL, Kendall K., Roberts AD (1971) Proc R Soc London Ser A 324:301

    Article  CAS  Google Scholar 

  34. Johnson KL (1958) Br J Appl Phys 9:199

    Article  Google Scholar 

  35. Johnson KL (1985) Contact mechanics. Cambridge University Press

  36. Nanda KK, Maisels A, Kruis EE, Fissan H, Stappert S (2003) Phys Rev Lett 91:106102/1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded through NSF grant number CMS0322436. The authors acknowledge support of the staff and facilities at the National Center for Electron Microscopy. We would also like to thank Prof. Steven Girshick and the HPPD research group for provision of the particles, and Prof. Anders Thölén and Dr. Martina Luysberg for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Barry Carter.

Appendix A

Appendix A

For analyzing the surface energy between two spheres as shown in Fig. 6, it was first considered that the result represented by Johnson’s Equation (5.51) in Ref. [35] could be utilized directly given by

$$ \gamma _{{\text{eff}}} \;\; = \;\;2\gamma _{\text{s}} \; - \;\gamma _{{\text{gb}}} \;\; = \;\;\frac{{4E^* a^3 }} {{9\pi R^2 }} $$
(3)

where γ gb is a grain boundary energy. In using the value of R equal to 56.4 nm from Eq. (2) this gave too large a result since the contact radius used, a c, was that at zero load while Eq. (3) is appropriate to a adh at the maximum negative tensile load necessary to separate the particles (represented by Pt. B in Fig. 5.8, Ref. [34]). Using the JKR result [33, 35],

$$ a^3 \;\; = \;\;\frac{{PR}} {K}\,\left[ {1\;\; + \;\;\frac{{3\pi \gamma _{{\text{eff}}} R}} {P}\;\; + \;\;\sqrt {\frac{{6\pi \gamma _{{\text{eff}}} R}} {P}\;\; + \;\;\frac{{\left( {3\pi \gamma _{{\text{eff}}} R} \right)^2 }} {{P^2 }}} \;} \right] $$
(4)

and setting P = 0 appropriate to Fig. 6, one obtains

$$ a_{\text{c}}^3 \;\; = \;\;\frac{{6\pi \gamma _{{\text{eff}}} R^2 }} {K}. $$
(5)

With the definition of \( K\;\; = \;\left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)\left( {{E \mathord{\left/ {\vphantom {E {\left( {1 - \nu ^2 } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {1 - \nu ^2 } \right)}}} \right)\; \), this becomes

$$ \gamma _{{\text{eff}}} \;\; = \;\;\frac{{Ea_{\text{c}}^3 }} {{9\pi \left( {1\; - \;\nu ^2 } \right)R^2 }} $$
(6)

which is Eq. (1) as utilized in the main text. Equations (3) and (6) are consistent with Johnson’s Fig. 5.8, Ref. [35].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deneen, J., Mook, W.M., Minor, A. et al. In situ deformation of silicon nanospheres. J Mater Sci 41, 4477–4483 (2006). https://doi.org/10.1007/s10853-006-0085-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0085-9

Keywords